github.com/intfoundation/intchain@v0.0.0-20220727031208-4316ad31ca73/p2p/discover/table.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package discover implements the Node Discovery Protocol.
    18  //
    19  // The Node Discovery protocol provides a way to find RLPx nodes that
    20  // can be connected to. It uses a Kademlia-like protocol to maintain a
    21  // distributed database of the IDs and endpoints of all listening
    22  // nodes.
    23  package discover
    24  
    25  import (
    26  	crand "crypto/rand"
    27  	"encoding/binary"
    28  	"errors"
    29  	"fmt"
    30  	mrand "math/rand"
    31  	"net"
    32  	"sort"
    33  	"sync"
    34  	"time"
    35  
    36  	"github.com/intfoundation/intchain/common"
    37  	"github.com/intfoundation/intchain/crypto"
    38  	"github.com/intfoundation/intchain/log"
    39  	"github.com/intfoundation/intchain/p2p/netutil"
    40  )
    41  
    42  const (
    43  	alpha           = 3  // Kademlia concurrency factor
    44  	bucketSize      = 16 // Kademlia bucket size
    45  	maxReplacements = 10 // Size of per-bucket replacement list
    46  
    47  	// We keep buckets for the upper 1/15 of distances because
    48  	// it's very unlikely we'll ever encounter a node that's closer.
    49  	hashBits          = len(common.Hash{}) * 8
    50  	nBuckets          = hashBits / 15       // Number of buckets
    51  	bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket
    52  
    53  	// IP address limits.
    54  	bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
    55  	tableIPLimit, tableSubnet   = 10, 24
    56  
    57  	maxBondingPingPongs = 16 // Limit on the number of concurrent ping/pong interactions
    58  	maxFindnodeFailures = 5  // Nodes exceeding this limit are dropped
    59  
    60  	refreshInterval    = 30 * time.Minute
    61  	revalidateInterval = 10 * time.Second
    62  	copyNodesInterval  = 30 * time.Second
    63  	seedMinTableTime   = 5 * time.Minute
    64  	seedCount          = 30
    65  	seedMaxAge         = 5 * 24 * time.Hour
    66  )
    67  
    68  type Table struct {
    69  	mutex   sync.Mutex        // protects buckets, bucket content, nursery, rand
    70  	buckets [nBuckets]*bucket // index of known nodes by distance
    71  	nursery []*Node           // bootstrap nodes
    72  	rand    *mrand.Rand       // source of randomness, periodically reseeded
    73  	ips     netutil.DistinctNetSet
    74  
    75  	db         *nodeDB // database of known nodes
    76  	refreshReq chan chan struct{}
    77  	initDone   chan struct{}
    78  	closeReq   chan struct{}
    79  	closed     chan struct{}
    80  
    81  	bondmu    sync.Mutex
    82  	bonding   map[NodeID]*bondproc
    83  	bondslots chan struct{} // limits total number of active bonding processes
    84  
    85  	nodeAddedHook func(*Node) // for testing
    86  
    87  	net  transport
    88  	self *Node // metadata of the local node
    89  }
    90  
    91  type bondproc struct {
    92  	err  error
    93  	n    *Node
    94  	done chan struct{}
    95  }
    96  
    97  // transport is implemented by the UDP transport.
    98  // it is an interface so we can test without opening lots of UDP
    99  // sockets and without generating a private key.
   100  type transport interface {
   101  	ping(NodeID, *net.UDPAddr) error
   102  	waitping(NodeID) error
   103  	findnode(toid NodeID, addr *net.UDPAddr, target NodeID) ([]*Node, error)
   104  	close()
   105  }
   106  
   107  // bucket contains nodes, ordered by their last activity. the entry
   108  // that was most recently active is the first element in entries.
   109  type bucket struct {
   110  	entries      []*Node // live entries, sorted by time of last contact
   111  	replacements []*Node // recently seen nodes to be used if revalidation fails
   112  	ips          netutil.DistinctNetSet
   113  }
   114  
   115  func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string, bootnodes []*Node) (*Table, error) {
   116  	// If no node database was given, use an in-memory one
   117  	db, err := newNodeDB(nodeDBPath, Version, ourID)
   118  	if err != nil {
   119  		return nil, err
   120  	}
   121  	tab := &Table{
   122  		net:        t,
   123  		db:         db,
   124  		self:       NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port)),
   125  		bonding:    make(map[NodeID]*bondproc),
   126  		bondslots:  make(chan struct{}, maxBondingPingPongs),
   127  		refreshReq: make(chan chan struct{}),
   128  		initDone:   make(chan struct{}),
   129  		closeReq:   make(chan struct{}),
   130  		closed:     make(chan struct{}),
   131  		rand:       mrand.New(mrand.NewSource(0)),
   132  		ips:        netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
   133  	}
   134  	if err := tab.setFallbackNodes(bootnodes); err != nil {
   135  		return nil, err
   136  	}
   137  	for i := 0; i < cap(tab.bondslots); i++ {
   138  		tab.bondslots <- struct{}{}
   139  	}
   140  	for i := range tab.buckets {
   141  		tab.buckets[i] = &bucket{
   142  			ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
   143  		}
   144  	}
   145  	tab.seedRand()
   146  	tab.loadSeedNodes(false)
   147  	// Start the background expiration goroutine after loading seeds so that the search for
   148  	// seed nodes also considers older nodes that would otherwise be removed by the
   149  	// expiration.
   150  	tab.db.ensureExpirer()
   151  	go tab.loop()
   152  	return tab, nil
   153  }
   154  
   155  func (tab *Table) seedRand() {
   156  	var b [8]byte
   157  	crand.Read(b[:])
   158  
   159  	tab.mutex.Lock()
   160  	tab.rand.Seed(int64(binary.BigEndian.Uint64(b[:])))
   161  	tab.mutex.Unlock()
   162  }
   163  
   164  // Self returns the local node.
   165  // The returned node should not be modified by the caller.
   166  func (tab *Table) Self() *Node {
   167  	return tab.self
   168  }
   169  
   170  // ReadRandomNodes fills the given slice with random nodes from the
   171  // table. It will not write the same node more than once. The nodes in
   172  // the slice are copies and can be modified by the caller.
   173  func (tab *Table) ReadRandomNodes(buf []*Node) (n int) {
   174  	if !tab.isInitDone() {
   175  		return 0
   176  	}
   177  	tab.mutex.Lock()
   178  	defer tab.mutex.Unlock()
   179  
   180  	// Find all non-empty buckets and get a fresh slice of their entries.
   181  	var buckets [][]*Node
   182  	for _, b := range tab.buckets {
   183  		if len(b.entries) > 0 {
   184  			buckets = append(buckets, b.entries[:])
   185  		}
   186  	}
   187  	if len(buckets) == 0 {
   188  		return 0
   189  	}
   190  	// Shuffle the buckets.
   191  	for i := len(buckets) - 1; i > 0; i-- {
   192  		j := tab.rand.Intn(len(buckets))
   193  		buckets[i], buckets[j] = buckets[j], buckets[i]
   194  	}
   195  	// Move head of each bucket into buf, removing buckets that become empty.
   196  	var i, j int
   197  	for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
   198  		b := buckets[j]
   199  		buf[i] = &(*b[0])
   200  		buckets[j] = b[1:]
   201  		if len(b) == 1 {
   202  			buckets = append(buckets[:j], buckets[j+1:]...)
   203  		}
   204  		if len(buckets) == 0 {
   205  			break
   206  		}
   207  	}
   208  	return i + 1
   209  }
   210  
   211  // Close terminates the network listener and flushes the node database.
   212  func (tab *Table) Close() {
   213  	select {
   214  	case <-tab.closed:
   215  		// already closed.
   216  	case tab.closeReq <- struct{}{}:
   217  		<-tab.closed // wait for refreshLoop to end.
   218  	}
   219  }
   220  
   221  // setFallbackNodes sets the initial points of contact. These nodes
   222  // are used to connect to the network if the table is empty and there
   223  // are no known nodes in the database.
   224  func (tab *Table) setFallbackNodes(nodes []*Node) error {
   225  	for _, n := range nodes {
   226  		if err := n.validateComplete(); err != nil {
   227  			return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
   228  		}
   229  	}
   230  	tab.nursery = make([]*Node, 0, len(nodes))
   231  	for _, n := range nodes {
   232  		cpy := *n
   233  		// Recompute cpy.sha because the node might not have been
   234  		// created by NewNode or ParseNode.
   235  		cpy.sha = crypto.Keccak256Hash(n.ID[:])
   236  		tab.nursery = append(tab.nursery, &cpy)
   237  	}
   238  	return nil
   239  }
   240  
   241  // isInitDone returns whether the table's initial seeding procedure has completed.
   242  func (tab *Table) isInitDone() bool {
   243  	select {
   244  	case <-tab.initDone:
   245  		return true
   246  	default:
   247  		return false
   248  	}
   249  }
   250  
   251  // Resolve searches for a specific node with the given ID.
   252  // It returns nil if the node could not be found.
   253  func (tab *Table) Resolve(targetID NodeID) *Node {
   254  	// If the node is present in the local table, no
   255  	// network interaction is required.
   256  	hash := crypto.Keccak256Hash(targetID[:])
   257  	tab.mutex.Lock()
   258  	cl := tab.closest(hash, 1)
   259  	tab.mutex.Unlock()
   260  	if len(cl.entries) > 0 && cl.entries[0].ID == targetID {
   261  		return cl.entries[0]
   262  	}
   263  	// Otherwise, do a network lookup.
   264  	result := tab.Lookup(targetID)
   265  	for _, n := range result {
   266  		if n.ID == targetID {
   267  			return n
   268  		}
   269  	}
   270  	return nil
   271  }
   272  
   273  // Lookup performs a network search for nodes close
   274  // to the given target. It approaches the target by querying
   275  // nodes that are closer to it on each iteration.
   276  // The given target does not need to be an actual node
   277  // identifier.
   278  func (tab *Table) Lookup(targetID NodeID) []*Node {
   279  	return tab.lookup(targetID, true)
   280  }
   281  
   282  func (tab *Table) lookup(targetID NodeID, refreshIfEmpty bool) []*Node {
   283  	var (
   284  		target         = crypto.Keccak256Hash(targetID[:])
   285  		asked          = make(map[NodeID]bool)
   286  		seen           = make(map[NodeID]bool)
   287  		reply          = make(chan []*Node, alpha)
   288  		pendingQueries = 0
   289  		result         *nodesByDistance
   290  	)
   291  	// don't query further if we hit ourself.
   292  	// unlikely to happen often in practice.
   293  	asked[tab.self.ID] = true
   294  
   295  	for {
   296  		tab.mutex.Lock()
   297  		// generate initial result set
   298  		result = tab.closest(target, bucketSize)
   299  		tab.mutex.Unlock()
   300  		if len(result.entries) > 0 || !refreshIfEmpty {
   301  			break
   302  		}
   303  		// The result set is empty, all nodes were dropped, refresh.
   304  		// We actually wait for the refresh to complete here. The very
   305  		// first query will hit this case and run the bootstrapping
   306  		// logic.
   307  		<-tab.refresh()
   308  		refreshIfEmpty = false
   309  	}
   310  
   311  	for {
   312  		// ask the alpha closest nodes that we haven't asked yet
   313  		for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
   314  			n := result.entries[i]
   315  			if !asked[n.ID] {
   316  				asked[n.ID] = true
   317  				pendingQueries++
   318  				go func() {
   319  					// Find potential neighbors to bond with
   320  					r, err := tab.net.findnode(n.ID, n.addr(), targetID)
   321  					if err != nil {
   322  						// Bump the failure counter to detect and evacuate non-bonded entries
   323  						fails := tab.db.findFails(n.ID) + 1
   324  						tab.db.updateFindFails(n.ID, fails)
   325  						log.Trace("Bumping findnode failure counter", "id", n.ID, "failcount", fails)
   326  
   327  						if fails >= maxFindnodeFailures {
   328  							log.Trace("Too many findnode failures, dropping", "id", n.ID, "failcount", fails)
   329  							tab.delete(n)
   330  						}
   331  					}
   332  					reply <- tab.bondall(r)
   333  				}()
   334  			}
   335  		}
   336  		if pendingQueries == 0 {
   337  			// we have asked all closest nodes, stop the search
   338  			break
   339  		}
   340  		// wait for the next reply
   341  		for _, n := range <-reply {
   342  			if n != nil && !seen[n.ID] {
   343  				seen[n.ID] = true
   344  				result.push(n, bucketSize)
   345  			}
   346  		}
   347  		pendingQueries--
   348  	}
   349  	return result.entries
   350  }
   351  
   352  func (tab *Table) refresh() <-chan struct{} {
   353  	done := make(chan struct{})
   354  	select {
   355  	case tab.refreshReq <- done:
   356  	case <-tab.closed:
   357  		close(done)
   358  	}
   359  	return done
   360  }
   361  
   362  // loop schedules refresh, revalidate runs and coordinates shutdown.
   363  func (tab *Table) loop() {
   364  	var (
   365  		revalidate     = time.NewTimer(tab.nextRevalidateTime())
   366  		refresh        = time.NewTicker(refreshInterval)
   367  		copyNodes      = time.NewTicker(copyNodesInterval)
   368  		revalidateDone = make(chan struct{})
   369  		refreshDone    = make(chan struct{})           // where doRefresh reports completion
   370  		waiting        = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
   371  	)
   372  	defer refresh.Stop()
   373  	defer revalidate.Stop()
   374  	defer copyNodes.Stop()
   375  
   376  	// Start initial refresh.
   377  	go tab.doRefresh(refreshDone)
   378  
   379  loop:
   380  	for {
   381  		select {
   382  		case <-refresh.C:
   383  			tab.seedRand()
   384  			if refreshDone == nil {
   385  				refreshDone = make(chan struct{})
   386  				go tab.doRefresh(refreshDone)
   387  			}
   388  		case req := <-tab.refreshReq:
   389  			waiting = append(waiting, req)
   390  			if refreshDone == nil {
   391  				refreshDone = make(chan struct{})
   392  				go tab.doRefresh(refreshDone)
   393  			}
   394  		case <-refreshDone:
   395  			for _, ch := range waiting {
   396  				close(ch)
   397  			}
   398  			waiting, refreshDone = nil, nil
   399  		case <-revalidate.C:
   400  			go tab.doRevalidate(revalidateDone)
   401  		case <-revalidateDone:
   402  			revalidate.Reset(tab.nextRevalidateTime())
   403  		case <-copyNodes.C:
   404  			go tab.copyBondedNodes()
   405  		case <-tab.closeReq:
   406  			break loop
   407  		}
   408  	}
   409  
   410  	if tab.net != nil {
   411  		tab.net.close()
   412  	}
   413  	if refreshDone != nil {
   414  		<-refreshDone
   415  	}
   416  	for _, ch := range waiting {
   417  		close(ch)
   418  	}
   419  	tab.db.close()
   420  	close(tab.closed)
   421  }
   422  
   423  // doRefresh performs a lookup for a random target to keep buckets
   424  // full. seed nodes are inserted if the table is empty (initial
   425  // bootstrap or discarded faulty peers).
   426  func (tab *Table) doRefresh(done chan struct{}) {
   427  	defer close(done)
   428  
   429  	// Load nodes from the database and insert
   430  	// them. This should yield a few previously seen nodes that are
   431  	// (hopefully) still alive.
   432  	tab.loadSeedNodes(true)
   433  
   434  	// Run self lookup to discover new neighbor nodes.
   435  	tab.lookup(tab.self.ID, false)
   436  
   437  	// The Kademlia paper specifies that the bucket refresh should
   438  	// perform a lookup in the least recently used bucket. We cannot
   439  	// adhere to this because the findnode target is a 512bit value
   440  	// (not hash-sized) and it is not easily possible to generate a
   441  	// sha3 preimage that falls into a chosen bucket.
   442  	// We perform a few lookups with a random target instead.
   443  	for i := 0; i < 3; i++ {
   444  		var target NodeID
   445  		crand.Read(target[:])
   446  		tab.lookup(target, false)
   447  	}
   448  }
   449  
   450  func (tab *Table) loadSeedNodes(bond bool) {
   451  	seeds := tab.db.querySeeds(seedCount, seedMaxAge)
   452  	seeds = append(seeds, tab.nursery...)
   453  	if bond {
   454  		seeds = tab.bondall(seeds)
   455  	}
   456  	for i := range seeds {
   457  		seed := seeds[i]
   458  		age := log.Lazy{Fn: func() interface{} { return time.Since(tab.db.bondTime(seed.ID)) }}
   459  		log.Debug("Found seed node in database", "id", seed.ID, "addr", seed.addr(), "age", age)
   460  		tab.add(seed)
   461  	}
   462  }
   463  
   464  // doRevalidate checks that the last node in a random bucket is still live
   465  // and replaces or deletes the node if it isn't.
   466  func (tab *Table) doRevalidate(done chan<- struct{}) {
   467  	defer func() { done <- struct{}{} }()
   468  
   469  	last, bi := tab.nodeToRevalidate()
   470  	if last == nil {
   471  		// No non-empty bucket found.
   472  		return
   473  	}
   474  
   475  	// Ping the selected node and wait for a pong.
   476  	err := tab.ping(last.ID, last.addr())
   477  
   478  	tab.mutex.Lock()
   479  	defer tab.mutex.Unlock()
   480  	b := tab.buckets[bi]
   481  	if err == nil {
   482  		// The node responded, move it to the front.
   483  		log.Debug("Revalidated node", "b", bi, "id", last.ID)
   484  		b.bump(last)
   485  		return
   486  	}
   487  	// No reply received, pick a replacement or delete the node if there aren't
   488  	// any replacements.
   489  	if r := tab.replace(b, last); r != nil {
   490  		log.Debug("Replaced dead node", "b", bi, "id", last.ID, "ip", last.IP, "r", r.ID, "rip", r.IP)
   491  	} else {
   492  		log.Debug("Removed dead node", "b", bi, "id", last.ID, "ip", last.IP)
   493  	}
   494  }
   495  
   496  // nodeToRevalidate returns the last node in a random, non-empty bucket.
   497  func (tab *Table) nodeToRevalidate() (n *Node, bi int) {
   498  	tab.mutex.Lock()
   499  	defer tab.mutex.Unlock()
   500  
   501  	for _, bi = range tab.rand.Perm(len(tab.buckets)) {
   502  		b := tab.buckets[bi]
   503  		if len(b.entries) > 0 {
   504  			last := b.entries[len(b.entries)-1]
   505  			return last, bi
   506  		}
   507  	}
   508  	return nil, 0
   509  }
   510  
   511  func (tab *Table) nextRevalidateTime() time.Duration {
   512  	tab.mutex.Lock()
   513  	defer tab.mutex.Unlock()
   514  
   515  	return time.Duration(tab.rand.Int63n(int64(revalidateInterval)))
   516  }
   517  
   518  // copyBondedNodes adds nodes from the table to the database if they have been in the table
   519  // longer then minTableTime.
   520  func (tab *Table) copyBondedNodes() {
   521  	tab.mutex.Lock()
   522  	defer tab.mutex.Unlock()
   523  
   524  	now := time.Now()
   525  	for _, b := range tab.buckets {
   526  		for _, n := range b.entries {
   527  			if now.Sub(n.addedAt) >= seedMinTableTime {
   528  				tab.db.updateNode(n)
   529  			}
   530  		}
   531  	}
   532  }
   533  
   534  // closest returns the n nodes in the table that are closest to the
   535  // given id. The caller must hold tab.mutex.
   536  func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
   537  	// This is a very wasteful way to find the closest nodes but
   538  	// obviously correct. I believe that tree-based buckets would make
   539  	// this easier to implement efficiently.
   540  	close := &nodesByDistance{target: target}
   541  	for _, b := range tab.buckets {
   542  		for _, n := range b.entries {
   543  			close.push(n, nresults)
   544  		}
   545  	}
   546  	return close
   547  }
   548  
   549  func (tab *Table) len() (n int) {
   550  	for _, b := range tab.buckets {
   551  		n += len(b.entries)
   552  	}
   553  	return n
   554  }
   555  
   556  // bondall bonds with all given nodes concurrently and returns
   557  // those nodes for which bonding has probably succeeded.
   558  func (tab *Table) bondall(nodes []*Node) (result []*Node) {
   559  	rc := make(chan *Node, len(nodes))
   560  	for i := range nodes {
   561  		go func(n *Node) {
   562  			nn, _ := tab.bond(false, n.ID, n.addr(), n.TCP)
   563  			rc <- nn
   564  		}(nodes[i])
   565  	}
   566  	for range nodes {
   567  		if n := <-rc; n != nil {
   568  			result = append(result, n)
   569  		}
   570  	}
   571  	return result
   572  }
   573  
   574  // bond ensures the local node has a bond with the given remote node.
   575  // It also attempts to insert the node into the table if bonding succeeds.
   576  // The caller must not hold tab.mutex.
   577  //
   578  // A bond is must be established before sending findnode requests.
   579  // Both sides must have completed a ping/pong exchange for a bond to
   580  // exist. The total number of active bonding processes is limited in
   581  // order to restrain network use.
   582  //
   583  // bond is meant to operate idempotently in that bonding with a remote
   584  // node which still remembers a previously established bond will work.
   585  // The remote node will simply not send a ping back, causing waitping
   586  // to time out.
   587  //
   588  // If pinged is true, the remote node has just pinged us and one half
   589  // of the process can be skipped.
   590  func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
   591  	if id == tab.self.ID {
   592  		return nil, errors.New("is self")
   593  	}
   594  	if pinged && !tab.isInitDone() {
   595  		return nil, errors.New("still initializing")
   596  	}
   597  	// Start bonding if we haven't seen this node for a while or if it failed findnode too often.
   598  	node, fails := tab.db.node(id), tab.db.findFails(id)
   599  	age := time.Since(tab.db.bondTime(id))
   600  	var result error
   601  	if fails > 0 || age > nodeDBNodeExpiration {
   602  		log.Trace("Starting bonding ping/pong", "id", id, "known", node != nil, "failcount", fails, "age", age)
   603  
   604  		tab.bondmu.Lock()
   605  		w := tab.bonding[id]
   606  		if w != nil {
   607  			// Wait for an existing bonding process to complete.
   608  			tab.bondmu.Unlock()
   609  			<-w.done
   610  		} else {
   611  			// Register a new bonding process.
   612  			w = &bondproc{done: make(chan struct{})}
   613  			tab.bonding[id] = w
   614  			tab.bondmu.Unlock()
   615  			// Do the ping/pong. The result goes into w.
   616  			tab.pingpong(w, pinged, id, addr, tcpPort)
   617  			// Unregister the process after it's done.
   618  			tab.bondmu.Lock()
   619  			delete(tab.bonding, id)
   620  			tab.bondmu.Unlock()
   621  		}
   622  		// Retrieve the bonding results
   623  		result = w.err
   624  		if result == nil {
   625  			node = w.n
   626  		}
   627  	}
   628  	// Add the node to the table even if the bonding ping/pong
   629  	// fails. It will be relaced quickly if it continues to be
   630  	// unresponsive.
   631  	if node != nil {
   632  		tab.add(node)
   633  		tab.db.updateFindFails(id, 0)
   634  	}
   635  	return node, result
   636  }
   637  
   638  func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
   639  	// Request a bonding slot to limit network usage
   640  	<-tab.bondslots
   641  	defer func() { tab.bondslots <- struct{}{} }()
   642  
   643  	// Ping the remote side and wait for a pong.
   644  	if w.err = tab.ping(id, addr); w.err != nil {
   645  		close(w.done)
   646  		return
   647  	}
   648  	if !pinged {
   649  		// Give the remote node a chance to ping us before we start
   650  		// sending findnode requests. If they still remember us,
   651  		// waitping will simply time out.
   652  		tab.net.waitping(id)
   653  	}
   654  	// Bonding succeeded, update the node database.
   655  	w.n = NewNode(id, addr.IP, uint16(addr.Port), tcpPort)
   656  	close(w.done)
   657  }
   658  
   659  // ping a remote endpoint and wait for a reply, also updating the node
   660  // database accordingly.
   661  func (tab *Table) ping(id NodeID, addr *net.UDPAddr) error {
   662  	tab.db.updateLastPing(id, time.Now())
   663  	if err := tab.net.ping(id, addr); err != nil {
   664  		return err
   665  	}
   666  	tab.db.updateBondTime(id, time.Now())
   667  	return nil
   668  }
   669  
   670  // bucket returns the bucket for the given node ID hash.
   671  func (tab *Table) bucket(sha common.Hash) *bucket {
   672  	d := logdist(tab.self.sha, sha)
   673  	if d <= bucketMinDistance {
   674  		return tab.buckets[0]
   675  	}
   676  	return tab.buckets[d-bucketMinDistance-1]
   677  }
   678  
   679  // add attempts to add the given node its corresponding bucket. If the
   680  // bucket has space available, adding the node succeeds immediately.
   681  // Otherwise, the node is added if the least recently active node in
   682  // the bucket does not respond to a ping packet.
   683  //
   684  // The caller must not hold tab.mutex.
   685  func (tab *Table) add(new *Node) {
   686  	tab.mutex.Lock()
   687  	defer tab.mutex.Unlock()
   688  
   689  	b := tab.bucket(new.sha)
   690  	if !tab.bumpOrAdd(b, new) {
   691  		// Node is not in table. Add it to the replacement list.
   692  		tab.addReplacement(b, new)
   693  	}
   694  }
   695  
   696  // stuff adds nodes the table to the end of their corresponding bucket
   697  // if the bucket is not full. The caller must not hold tab.mutex.
   698  func (tab *Table) stuff(nodes []*Node) {
   699  	tab.mutex.Lock()
   700  	defer tab.mutex.Unlock()
   701  
   702  	for _, n := range nodes {
   703  		if n.ID == tab.self.ID {
   704  			continue // don't add self
   705  		}
   706  		b := tab.bucket(n.sha)
   707  		if len(b.entries) < bucketSize {
   708  			tab.bumpOrAdd(b, n)
   709  		}
   710  	}
   711  }
   712  
   713  // delete removes an entry from the node table (used to evacuate
   714  // failed/non-bonded discovery peers).
   715  func (tab *Table) delete(node *Node) {
   716  	tab.mutex.Lock()
   717  	defer tab.mutex.Unlock()
   718  
   719  	tab.deleteInBucket(tab.bucket(node.sha), node)
   720  }
   721  
   722  func (tab *Table) addIP(b *bucket, ip net.IP) bool {
   723  	if netutil.IsLAN(ip) {
   724  		return true
   725  	}
   726  	if !tab.ips.Add(ip) {
   727  		log.Debug("IP exceeds table limit", "ip", ip)
   728  		return false
   729  	}
   730  	if !b.ips.Add(ip) {
   731  		log.Debug("IP exceeds bucket limit", "ip", ip)
   732  		tab.ips.Remove(ip)
   733  		return false
   734  	}
   735  	return true
   736  }
   737  
   738  func (tab *Table) removeIP(b *bucket, ip net.IP) {
   739  	if netutil.IsLAN(ip) {
   740  		return
   741  	}
   742  	tab.ips.Remove(ip)
   743  	b.ips.Remove(ip)
   744  }
   745  
   746  func (tab *Table) addReplacement(b *bucket, n *Node) {
   747  	for _, e := range b.replacements {
   748  		if e.ID == n.ID {
   749  			return // already in list
   750  		}
   751  	}
   752  	if !tab.addIP(b, n.IP) {
   753  		return
   754  	}
   755  	var removed *Node
   756  	b.replacements, removed = pushNode(b.replacements, n, maxReplacements)
   757  	if removed != nil {
   758  		tab.removeIP(b, removed.IP)
   759  	}
   760  }
   761  
   762  // replace removes n from the replacement list and replaces 'last' with it if it is the
   763  // last entry in the bucket. If 'last' isn't the last entry, it has either been replaced
   764  // with someone else or became active.
   765  func (tab *Table) replace(b *bucket, last *Node) *Node {
   766  	if len(b.entries) == 0 || b.entries[len(b.entries)-1].ID != last.ID {
   767  		// Entry has moved, don't replace it.
   768  		return nil
   769  	}
   770  	// Still the last entry.
   771  	if len(b.replacements) == 0 {
   772  		tab.deleteInBucket(b, last)
   773  		return nil
   774  	}
   775  	r := b.replacements[tab.rand.Intn(len(b.replacements))]
   776  	b.replacements = deleteNode(b.replacements, r)
   777  	b.entries[len(b.entries)-1] = r
   778  	tab.removeIP(b, last.IP)
   779  	return r
   780  }
   781  
   782  // bump moves the given node to the front of the bucket entry list
   783  // if it is contained in that list.
   784  func (b *bucket) bump(n *Node) bool {
   785  	for i := range b.entries {
   786  		if b.entries[i].ID == n.ID {
   787  			// move it to the front
   788  			copy(b.entries[1:], b.entries[:i])
   789  			b.entries[0] = n
   790  			return true
   791  		}
   792  	}
   793  	return false
   794  }
   795  
   796  // bumpOrAdd moves n to the front of the bucket entry list or adds it if the list isn't
   797  // full. The return value is true if n is in the bucket.
   798  func (tab *Table) bumpOrAdd(b *bucket, n *Node) bool {
   799  	if b.bump(n) {
   800  		return true
   801  	}
   802  	if len(b.entries) >= bucketSize || !tab.addIP(b, n.IP) {
   803  		return false
   804  	}
   805  	b.entries, _ = pushNode(b.entries, n, bucketSize)
   806  	b.replacements = deleteNode(b.replacements, n)
   807  	n.addedAt = time.Now()
   808  	if tab.nodeAddedHook != nil {
   809  		tab.nodeAddedHook(n)
   810  	}
   811  	return true
   812  }
   813  
   814  func (tab *Table) deleteInBucket(b *bucket, n *Node) {
   815  	b.entries = deleteNode(b.entries, n)
   816  	tab.removeIP(b, n.IP)
   817  }
   818  
   819  // pushNode adds n to the front of list, keeping at most max items.
   820  func pushNode(list []*Node, n *Node, max int) ([]*Node, *Node) {
   821  	if len(list) < max {
   822  		list = append(list, nil)
   823  	}
   824  	removed := list[len(list)-1]
   825  	copy(list[1:], list)
   826  	list[0] = n
   827  	return list, removed
   828  }
   829  
   830  // deleteNode removes n from list.
   831  func deleteNode(list []*Node, n *Node) []*Node {
   832  	for i := range list {
   833  		if list[i].ID == n.ID {
   834  			return append(list[:i], list[i+1:]...)
   835  		}
   836  	}
   837  	return list
   838  }
   839  
   840  // nodesByDistance is a list of nodes, ordered by
   841  // distance to target.
   842  type nodesByDistance struct {
   843  	entries []*Node
   844  	target  common.Hash
   845  }
   846  
   847  // push adds the given node to the list, keeping the total size below maxElems.
   848  func (h *nodesByDistance) push(n *Node, maxElems int) {
   849  	ix := sort.Search(len(h.entries), func(i int) bool {
   850  		return distcmp(h.target, h.entries[i].sha, n.sha) > 0
   851  	})
   852  	if len(h.entries) < maxElems {
   853  		h.entries = append(h.entries, n)
   854  	}
   855  	if ix == len(h.entries) {
   856  		// farther away than all nodes we already have.
   857  		// if there was room for it, the node is now the last element.
   858  	} else {
   859  		// slide existing entries down to make room
   860  		// this will overwrite the entry we just appended.
   861  		copy(h.entries[ix+1:], h.entries[ix:])
   862  		h.entries[ix] = n
   863  	}
   864  }