github.com/intfoundation/intchain@v0.0.0-20220727031208-4316ad31ca73/p2p/rlpx.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package p2p 18 19 import ( 20 "bytes" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/ecdsa" 24 "crypto/elliptic" 25 "crypto/hmac" 26 "crypto/rand" 27 "encoding/binary" 28 "errors" 29 "fmt" 30 "hash" 31 "io" 32 "io/ioutil" 33 mrand "math/rand" 34 "net" 35 "sync" 36 "time" 37 38 "github.com/golang/snappy" 39 "github.com/intfoundation/intchain/crypto" 40 "github.com/intfoundation/intchain/crypto/ecies" 41 "github.com/intfoundation/intchain/crypto/secp256k1" 42 "github.com/intfoundation/intchain/p2p/discover" 43 "github.com/intfoundation/intchain/rlp" 44 "golang.org/x/crypto/sha3" 45 ) 46 47 const ( 48 maxUint24 = ^uint32(0) >> 8 49 50 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 51 sigLen = 65 // elliptic S256 52 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 53 shaLen = 32 // hash length (for nonce etc) 54 55 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 56 authRespLen = pubLen + shaLen + 1 57 58 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 59 60 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 61 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 62 63 // total timeout for encryption handshake and protocol 64 // handshake in both directions. 65 handshakeTimeout = 5 * time.Second 66 67 // This is the timeout for sending the disconnect reason. 68 // This is shorter than the usual timeout because we don't want 69 // to wait if the connection is known to be bad anyway. 70 discWriteTimeout = 1 * time.Second 71 ) 72 73 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 74 // the allowed 24 bits (i.e. length >= 16MB). 75 var errPlainMessageTooLarge = errors.New("message length >= 16MB") 76 77 // rlpx is the transport protocol used by actual (non-test) connections. 78 // It wraps the frame encoder with locks and read/write deadlines. 79 type rlpx struct { 80 fd net.Conn 81 82 rmu, wmu sync.Mutex 83 rw *rlpxFrameRW 84 } 85 86 func newRLPX(fd net.Conn) transport { 87 fd.SetDeadline(time.Now().Add(handshakeTimeout)) 88 return &rlpx{fd: fd} 89 } 90 91 func (t *rlpx) ReadMsg() (Msg, error) { 92 t.rmu.Lock() 93 defer t.rmu.Unlock() 94 t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)) 95 return t.rw.ReadMsg() 96 } 97 98 func (t *rlpx) WriteMsg(msg Msg) error { 99 t.wmu.Lock() 100 defer t.wmu.Unlock() 101 t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)) 102 return t.rw.WriteMsg(msg) 103 } 104 105 func (t *rlpx) close(err error) { 106 t.wmu.Lock() 107 defer t.wmu.Unlock() 108 // Tell the remote end why we're disconnecting if possible. 109 if t.rw != nil { 110 if r, ok := err.(DiscReason); ok && r != DiscNetworkError { 111 // rlpx tries to send DiscReason to disconnected peer 112 // if the connection is net.Pipe (in-memory simulation) 113 // it hangs forever, since net.Pipe does not implement 114 // a write deadline. Because of this only try to send 115 // the disconnect reason message if there is no error. 116 if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err == nil { 117 SendItems(t.rw, discMsg, r) 118 } 119 } 120 } 121 t.fd.Close() 122 } 123 124 func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) { 125 // Writing our handshake happens concurrently, we prefer 126 // returning the handshake read error. If the remote side 127 // disconnects us early with a valid reason, we should return it 128 // as the error so it can be tracked elsewhere. 129 werr := make(chan error, 1) 130 go func() { werr <- Send(t.rw, handshakeMsg, our) }() 131 if their, err = readProtocolHandshake(t.rw, our); err != nil { 132 <-werr // make sure the write terminates too 133 return nil, err 134 } 135 if err := <-werr; err != nil { 136 return nil, fmt.Errorf("write error: %v", err) 137 } 138 // If the protocol version supports Snappy encoding, upgrade immediately 139 t.rw.snappy = their.Version >= snappyProtocolVersion 140 141 return their, nil 142 } 143 144 func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) { 145 msg, err := rw.ReadMsg() 146 if err != nil { 147 return nil, err 148 } 149 if msg.Size > baseProtocolMaxMsgSize { 150 return nil, fmt.Errorf("message too big") 151 } 152 if msg.Code == discMsg { 153 // Disconnect before protocol handshake is valid according to the 154 // spec and we send it ourself if the posthanshake checks fail. 155 // We can't return the reason directly, though, because it is echoed 156 // back otherwise. Wrap it in a string instead. 157 var reason [1]DiscReason 158 rlp.Decode(msg.Payload, &reason) 159 return nil, reason[0] 160 } 161 if msg.Code != handshakeMsg { 162 return nil, fmt.Errorf("expected handshake, got %x", msg.Code) 163 } 164 var hs protoHandshake 165 if err := msg.Decode(&hs); err != nil { 166 return nil, err 167 } 168 if (hs.ID == discover.NodeID{}) { 169 return nil, DiscInvalidIdentity 170 } 171 return &hs, nil 172 } 173 174 // doEncHandshake runs the protocol handshake using authenticated 175 // messages. the protocol handshake is the first authenticated message 176 // and also verifies whether the encryption handshake 'worked' and the 177 // remote side actually provided the right public key. 178 func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) { 179 var ( 180 sec secrets 181 err error 182 ) 183 if dial == nil { 184 sec, err = receiverEncHandshake(t.fd, prv, nil) 185 } else { 186 sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil) 187 } 188 if err != nil { 189 return discover.NodeID{}, err 190 } 191 t.wmu.Lock() 192 t.rw = newRLPXFrameRW(t.fd, sec) 193 t.wmu.Unlock() 194 return sec.RemoteID, nil 195 } 196 197 // encHandshake contains the state of the encryption handshake. 198 type encHandshake struct { 199 initiator bool 200 remoteID discover.NodeID 201 202 remotePub *ecies.PublicKey // remote-pubk 203 initNonce, respNonce []byte // nonce 204 randomPrivKey *ecies.PrivateKey // ecdhe-random 205 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 206 } 207 208 // secrets represents the connection secrets 209 // which are negotiated during the encryption handshake. 210 type secrets struct { 211 RemoteID discover.NodeID 212 AES, MAC []byte 213 EgressMAC, IngressMAC hash.Hash 214 Token []byte 215 } 216 217 // RLPx v4 handshake auth (defined in EIP-8). 218 type authMsgV4 struct { 219 gotPlain bool // whether read packet had plain format. 220 221 Signature [sigLen]byte 222 InitiatorPubkey [pubLen]byte 223 Nonce [shaLen]byte 224 Version uint 225 226 // Ignore additional fields (forward-compatibility) 227 Rest []rlp.RawValue `rlp:"tail"` 228 } 229 230 // RLPx v4 handshake response (defined in EIP-8). 231 type authRespV4 struct { 232 RandomPubkey [pubLen]byte 233 Nonce [shaLen]byte 234 Version uint 235 236 // Ignore additional fields (forward-compatibility) 237 Rest []rlp.RawValue `rlp:"tail"` 238 } 239 240 // secrets is called after the handshake is completed. 241 // It extracts the connection secrets from the handshake values. 242 func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { 243 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 244 if err != nil { 245 return secrets{}, err 246 } 247 248 // derive base secrets from ephemeral key agreement 249 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 250 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 251 s := secrets{ 252 RemoteID: h.remoteID, 253 AES: aesSecret, 254 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 255 } 256 257 // setup sha3 instances for the MACs 258 mac1 := sha3.NewLegacyKeccak256() 259 mac1.Write(xor(s.MAC, h.respNonce)) 260 mac1.Write(auth) 261 mac2 := sha3.NewLegacyKeccak256() 262 mac2.Write(xor(s.MAC, h.initNonce)) 263 mac2.Write(authResp) 264 if h.initiator { 265 s.EgressMAC, s.IngressMAC = mac1, mac2 266 } else { 267 s.EgressMAC, s.IngressMAC = mac2, mac1 268 } 269 270 return s, nil 271 } 272 273 // staticSharedSecret returns the static shared secret, the result 274 // of key agreement between the local and remote static node key. 275 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 276 return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen) 277 } 278 279 // initiatorEncHandshake negotiates a session token on conn. 280 // it should be called on the dialing side of the connection. 281 // 282 // prv is the local client's private key. 283 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) { 284 h := &encHandshake{initiator: true, remoteID: remoteID} 285 authMsg, err := h.makeAuthMsg(prv, token) 286 if err != nil { 287 return s, err 288 } 289 authPacket, err := sealEIP8(authMsg, h) 290 if err != nil { 291 return s, err 292 } 293 if _, err = conn.Write(authPacket); err != nil { 294 return s, err 295 } 296 297 authRespMsg := new(authRespV4) 298 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 299 if err != nil { 300 return s, err 301 } 302 if err := h.handleAuthResp(authRespMsg); err != nil { 303 return s, err 304 } 305 return h.secrets(authPacket, authRespPacket) 306 } 307 308 // makeAuthMsg creates the initiator handshake message. 309 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMsgV4, error) { 310 rpub, err := h.remoteID.Pubkey() 311 if err != nil { 312 return nil, fmt.Errorf("bad remoteID: %v", err) 313 } 314 h.remotePub = ecies.ImportECDSAPublic(rpub) 315 // Generate random initiator nonce. 316 h.initNonce = make([]byte, shaLen) 317 if _, err := rand.Read(h.initNonce); err != nil { 318 return nil, err 319 } 320 // Generate random keypair to for ECDH. 321 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 322 if err != nil { 323 return nil, err 324 } 325 326 // Sign known message: static-shared-secret ^ nonce 327 token, err = h.staticSharedSecret(prv) 328 if err != nil { 329 return nil, err 330 } 331 signed := xor(token, h.initNonce) 332 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 333 if err != nil { 334 return nil, err 335 } 336 337 msg := new(authMsgV4) 338 copy(msg.Signature[:], signature) 339 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 340 copy(msg.Nonce[:], h.initNonce) 341 msg.Version = 4 342 return msg, nil 343 } 344 345 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 346 h.respNonce = msg.Nonce[:] 347 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 348 return err 349 } 350 351 // receiverEncHandshake negotiates a session token on conn. 352 // it should be called on the listening side of the connection. 353 // 354 // prv is the local client's private key. 355 // token is the token from a previous session with this node. 356 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) { 357 authMsg := new(authMsgV4) 358 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 359 if err != nil { 360 return s, err 361 } 362 h := new(encHandshake) 363 if err := h.handleAuthMsg(authMsg, prv); err != nil { 364 return s, err 365 } 366 367 authRespMsg, err := h.makeAuthResp() 368 if err != nil { 369 return s, err 370 } 371 var authRespPacket []byte 372 if authMsg.gotPlain { 373 authRespPacket, err = authRespMsg.sealPlain(h) 374 } else { 375 authRespPacket, err = sealEIP8(authRespMsg, h) 376 } 377 if err != nil { 378 return s, err 379 } 380 if _, err = conn.Write(authRespPacket); err != nil { 381 return s, err 382 } 383 return h.secrets(authPacket, authRespPacket) 384 } 385 386 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 387 // Import the remote identity. 388 h.initNonce = msg.Nonce[:] 389 h.remoteID = msg.InitiatorPubkey 390 rpub, err := h.remoteID.Pubkey() 391 if err != nil { 392 return fmt.Errorf("bad remoteID: %#v", err) 393 } 394 h.remotePub = ecies.ImportECDSAPublic(rpub) 395 396 // Generate random keypair for ECDH. 397 // If a private key is already set, use it instead of generating one (for testing). 398 if h.randomPrivKey == nil { 399 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 400 if err != nil { 401 return err 402 } 403 } 404 405 // Check the signature. 406 token, err := h.staticSharedSecret(prv) 407 if err != nil { 408 return err 409 } 410 signedMsg := xor(token, h.initNonce) 411 remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:]) 412 if err != nil { 413 return err 414 } 415 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 416 return nil 417 } 418 419 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 420 // Generate random nonce. 421 h.respNonce = make([]byte, shaLen) 422 if _, err = rand.Read(h.respNonce); err != nil { 423 return nil, err 424 } 425 426 msg = new(authRespV4) 427 copy(msg.Nonce[:], h.respNonce) 428 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 429 msg.Version = 4 430 return msg, nil 431 } 432 433 func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) { 434 buf := make([]byte, authMsgLen) 435 n := copy(buf, msg.Signature[:]) 436 n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey))) 437 n += copy(buf[n:], msg.InitiatorPubkey[:]) 438 n += copy(buf[n:], msg.Nonce[:]) 439 buf[n] = 0 // token-flag 440 return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil) 441 } 442 443 func (msg *authMsgV4) decodePlain(input []byte) { 444 n := copy(msg.Signature[:], input) 445 n += shaLen // skip sha3(initiator-ephemeral-pubk) 446 n += copy(msg.InitiatorPubkey[:], input[n:]) 447 copy(msg.Nonce[:], input[n:]) 448 msg.Version = 4 449 msg.gotPlain = true 450 } 451 452 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 453 buf := make([]byte, authRespLen) 454 n := copy(buf, msg.RandomPubkey[:]) 455 copy(buf[n:], msg.Nonce[:]) 456 return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil) 457 } 458 459 func (msg *authRespV4) decodePlain(input []byte) { 460 n := copy(msg.RandomPubkey[:], input) 461 copy(msg.Nonce[:], input[n:]) 462 msg.Version = 4 463 } 464 465 var padSpace = make([]byte, 300) 466 467 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 468 buf := new(bytes.Buffer) 469 if err := rlp.Encode(buf, msg); err != nil { 470 return nil, err 471 } 472 // pad with random amount of data. the amount needs to be at least 100 bytes to make 473 // the message distinguishable from pre-EIP-8 handshakes. 474 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 475 buf.Write(pad) 476 prefix := make([]byte, 2) 477 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 478 479 enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix) 480 return append(prefix, enc...), err 481 } 482 483 type plainDecoder interface { 484 decodePlain([]byte) 485 } 486 487 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 488 buf := make([]byte, plainSize) 489 if _, err := io.ReadFull(r, buf); err != nil { 490 return buf, err 491 } 492 // Attempt decoding pre-EIP-8 "plain" format. 493 key := ecies.ImportECDSA(prv) 494 if dec, err := key.Decrypt(rand.Reader, buf, nil, nil); err == nil { 495 msg.decodePlain(dec) 496 return buf, nil 497 } 498 // Could be EIP-8 format, try that. 499 prefix := buf[:2] 500 size := binary.BigEndian.Uint16(prefix) 501 if size < uint16(plainSize) { 502 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 503 } 504 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 505 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 506 return buf, err 507 } 508 dec, err := key.Decrypt(rand.Reader, buf[2:], nil, prefix) 509 if err != nil { 510 return buf, err 511 } 512 // Can't use rlp.DecodeBytes here because it rejects 513 // trailing data (forward-compatibility). 514 s := rlp.NewStream(bytes.NewReader(dec), 0) 515 return buf, s.Decode(msg) 516 } 517 518 // importPublicKey unmarshals 512 bit public keys. 519 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 520 var pubKey65 []byte 521 switch len(pubKey) { 522 case 64: 523 // add 'uncompressed key' flag 524 pubKey65 = append([]byte{0x04}, pubKey...) 525 case 65: 526 pubKey65 = pubKey 527 default: 528 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 529 } 530 // TODO: fewer pointless conversions 531 pub, err := crypto.UnmarshalPubkey(pubKey65) 532 if err != nil { 533 return nil, err 534 } 535 return ecies.ImportECDSAPublic(pub), nil 536 } 537 538 func exportPubkey(pub *ecies.PublicKey) []byte { 539 if pub == nil { 540 panic("nil pubkey") 541 } 542 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 543 } 544 545 func xor(one, other []byte) (xor []byte) { 546 xor = make([]byte, len(one)) 547 for i := 0; i < len(one); i++ { 548 xor[i] = one[i] ^ other[i] 549 } 550 return xor 551 } 552 553 var ( 554 // this is used in place of actual frame header data. 555 // TODO: replace this when Msg contains the protocol type code. 556 zeroHeader = []byte{0xC2, 0x80, 0x80} 557 // sixteen zero bytes 558 zero16 = make([]byte, 16) 559 ) 560 561 // rlpxFrameRW implements a simplified version of RLPx framing. 562 // chunked messages are not supported and all headers are equal to 563 // zeroHeader. 564 // 565 // rlpxFrameRW is not safe for concurrent use from multiple goroutines. 566 type rlpxFrameRW struct { 567 conn io.ReadWriter 568 enc cipher.Stream 569 dec cipher.Stream 570 571 macCipher cipher.Block 572 egressMAC hash.Hash 573 ingressMAC hash.Hash 574 575 snappy bool 576 } 577 578 func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { 579 macc, err := aes.NewCipher(s.MAC) 580 if err != nil { 581 panic("invalid MAC secret: " + err.Error()) 582 } 583 encc, err := aes.NewCipher(s.AES) 584 if err != nil { 585 panic("invalid AES secret: " + err.Error()) 586 } 587 // we use an all-zeroes IV for AES because the key used 588 // for encryption is ephemeral. 589 iv := make([]byte, encc.BlockSize()) 590 return &rlpxFrameRW{ 591 conn: conn, 592 enc: cipher.NewCTR(encc, iv), 593 dec: cipher.NewCTR(encc, iv), 594 macCipher: macc, 595 egressMAC: s.EgressMAC, 596 ingressMAC: s.IngressMAC, 597 } 598 } 599 600 func (rw *rlpxFrameRW) WriteMsg(msg Msg) error { 601 ptype, _ := rlp.EncodeToBytes(msg.Code) 602 603 // if snappy is enabled, compress message now 604 if rw.snappy { 605 if msg.Size > maxUint24 { 606 return errPlainMessageTooLarge 607 } 608 payload, _ := ioutil.ReadAll(msg.Payload) 609 payload = snappy.Encode(nil, payload) 610 611 msg.Payload = bytes.NewReader(payload) 612 msg.Size = uint32(len(payload)) 613 } 614 // write header 615 headbuf := make([]byte, 32) 616 fsize := uint32(len(ptype)) + msg.Size 617 if fsize > maxUint24 { 618 return errors.New("message size overflows uint24") 619 } 620 putInt24(fsize, headbuf) // TODO: check overflow 621 copy(headbuf[3:], zeroHeader) 622 rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 623 624 // write header MAC 625 copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16])) 626 if _, err := rw.conn.Write(headbuf); err != nil { 627 return err 628 } 629 630 // write encrypted frame, updating the egress MAC hash with 631 // the data written to conn. 632 tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)} 633 if _, err := tee.Write(ptype); err != nil { 634 return err 635 } 636 if _, err := io.Copy(tee, msg.Payload); err != nil { 637 return err 638 } 639 if padding := fsize % 16; padding > 0 { 640 if _, err := tee.Write(zero16[:16-padding]); err != nil { 641 return err 642 } 643 } 644 645 // write frame MAC. egress MAC hash is up to date because 646 // frame content was written to it as well. 647 fmacseed := rw.egressMAC.Sum(nil) 648 mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed) 649 _, err := rw.conn.Write(mac) 650 return err 651 } 652 653 func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) { 654 // read the header 655 headbuf := make([]byte, 32) 656 if _, err := io.ReadFull(rw.conn, headbuf); err != nil { 657 return msg, err 658 } 659 // verify header mac 660 shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16]) 661 if !hmac.Equal(shouldMAC, headbuf[16:]) { 662 return msg, errors.New("bad header MAC") 663 } 664 rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 665 fsize := readInt24(headbuf) 666 // ignore protocol type for now 667 668 // read the frame content 669 var rsize = fsize // frame size rounded up to 16 byte boundary 670 if padding := fsize % 16; padding > 0 { 671 rsize += 16 - padding 672 } 673 framebuf := make([]byte, rsize) 674 if _, err := io.ReadFull(rw.conn, framebuf); err != nil { 675 return msg, err 676 } 677 678 // read and validate frame MAC. we can re-use headbuf for that. 679 rw.ingressMAC.Write(framebuf) 680 fmacseed := rw.ingressMAC.Sum(nil) 681 if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil { 682 return msg, err 683 } 684 shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed) 685 if !hmac.Equal(shouldMAC, headbuf[:16]) { 686 return msg, errors.New("bad frame MAC") 687 } 688 689 // decrypt frame content 690 rw.dec.XORKeyStream(framebuf, framebuf) 691 692 // decode message code 693 content := bytes.NewReader(framebuf[:fsize]) 694 if err := rlp.Decode(content, &msg.Code); err != nil { 695 return msg, err 696 } 697 msg.Size = uint32(content.Len()) 698 msg.Payload = content 699 700 // if snappy is enabled, verify and decompress message 701 if rw.snappy { 702 payload, err := ioutil.ReadAll(msg.Payload) 703 if err != nil { 704 return msg, err 705 } 706 size, err := snappy.DecodedLen(payload) 707 if err != nil { 708 return msg, err 709 } 710 if size > int(maxUint24) { 711 return msg, errPlainMessageTooLarge 712 } 713 payload, err = snappy.Decode(nil, payload) 714 if err != nil { 715 return msg, err 716 } 717 msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload) 718 } 719 return msg, nil 720 } 721 722 // updateMAC reseeds the given hash with encrypted seed. 723 // it returns the first 16 bytes of the hash sum after seeding. 724 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 725 aesbuf := make([]byte, aes.BlockSize) 726 block.Encrypt(aesbuf, mac.Sum(nil)) 727 for i := range aesbuf { 728 aesbuf[i] ^= seed[i] 729 } 730 mac.Write(aesbuf) 731 return mac.Sum(nil)[:16] 732 } 733 734 func readInt24(b []byte) uint32 { 735 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 736 } 737 738 func putInt24(v uint32, b []byte) { 739 b[0] = byte(v >> 16) 740 b[1] = byte(v >> 8) 741 b[2] = byte(v) 742 }