github.com/intfoundation/intchain@v0.0.0-20220727031208-4316ad31ca73/trie/encoding.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 // Trie keys are dealt with in three distinct encodings: 20 // 21 // KEYBYTES encoding contains the actual key and nothing else. This encoding is the 22 // input to most API functions. 23 // 24 // HEX encoding contains one byte for each nibble of the key and an optional trailing 25 // 'terminator' byte of value 0x10 which indicates whether or not the node at the key 26 // contains a value. Hex key encoding is used for nodes loaded in memory because it's 27 // convenient to access. 28 // 29 // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix 30 // encoding" there) and contains the bytes of the key and a flag. The high nibble of the 31 // first byte contains the flag; the lowest bit encoding the oddness of the length and 32 // the second-lowest encoding whether the node at the key is a value node. The low nibble 33 // of the first byte is zero in the case of an even number of nibbles and the first nibble 34 // in the case of an odd number. All remaining nibbles (now an even number) fit properly 35 // into the remaining bytes. Compact encoding is used for nodes stored on disk. 36 37 func hexToCompact(hex []byte) []byte { 38 terminator := byte(0) 39 if hasTerm(hex) { 40 terminator = 1 41 hex = hex[:len(hex)-1] 42 } 43 buf := make([]byte, len(hex)/2+1) 44 buf[0] = terminator << 5 // the flag byte 45 if len(hex)&1 == 1 { 46 buf[0] |= 1 << 4 // odd flag 47 buf[0] |= hex[0] // first nibble is contained in the first byte 48 hex = hex[1:] 49 } 50 decodeNibbles(hex, buf[1:]) 51 return buf 52 } 53 54 func compactToHex(compact []byte) []byte { 55 if len(compact) == 0 { 56 return compact 57 } 58 base := keybytesToHex(compact) 59 // delete terminator flag 60 if base[0] < 2 { 61 base = base[:len(base)-1] 62 } 63 // apply odd flag 64 chop := 2 - base[0]&1 65 return base[chop:] 66 } 67 68 func keybytesToHex(str []byte) []byte { 69 l := len(str)*2 + 1 70 var nibbles = make([]byte, l) 71 for i, b := range str { 72 nibbles[i*2] = b / 16 73 nibbles[i*2+1] = b % 16 74 } 75 nibbles[l-1] = 16 76 return nibbles 77 } 78 79 // hexToKeybytes turns hex nibbles into key bytes. 80 // This can only be used for keys of even length. 81 func hexToKeybytes(hex []byte) []byte { 82 if hasTerm(hex) { 83 hex = hex[:len(hex)-1] 84 } 85 if len(hex)&1 != 0 { 86 panic("can't convert hex key of odd length") 87 } 88 key := make([]byte, len(hex)/2) 89 decodeNibbles(hex, key) 90 return key 91 } 92 93 func decodeNibbles(nibbles []byte, bytes []byte) { 94 for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 { 95 bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1] 96 } 97 } 98 99 // prefixLen returns the length of the common prefix of a and b. 100 func prefixLen(a, b []byte) int { 101 var i, length = 0, len(a) 102 if len(b) < length { 103 length = len(b) 104 } 105 for ; i < length; i++ { 106 if a[i] != b[i] { 107 break 108 } 109 } 110 return i 111 } 112 113 // hasTerm returns whether a hex key has the terminator flag. 114 func hasTerm(s []byte) bool { 115 return len(s) > 0 && s[len(s)-1] == 16 116 }