github.com/jancarloviray/community@v0.41.1-0.20170124221257-33a66c87cf2f/app/public/codemirror/mode/mathematica/index.html (about)

     1  <!doctype html>
     2  
     3  <title>CodeMirror: Mathematica mode</title>
     4  <meta charset="utf-8"/>
     5  <link rel=stylesheet href="../../doc/docs.css">
     6  
     7  <link rel=stylesheet href=../../lib/codemirror.css>
     8  <script src=../../lib/codemirror.js></script>
     9  <script src=../../addon/edit/matchbrackets.js></script>
    10  <script src=mathematica.js></script>
    11  <style type=text/css>
    12    .CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;}
    13  </style>
    14  <div id=nav>
    15    <a href="http://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a>
    16  
    17    <ul>
    18      <li><a href="../../index.html">Home</a>
    19      <li><a href="../../doc/manual.html">Manual</a>
    20      <li><a href="https://github.com/codemirror/codemirror">Code</a>
    21    </ul>
    22    <ul>
    23      <li><a href="../index.html">Language modes</a>
    24      <li><a class=active href="#">Mathematica</a>
    25    </ul>
    26  </div>
    27  
    28  <article>
    29  <h2>Mathematica mode</h2>
    30  
    31  
    32  <textarea id="mathematicaCode">
    33  (* example Mathematica code *)
    34  (* Dualisiert wird anhand einer Polarität an einer
    35     Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also
    36     mit $det(Q) \neq 0$), z.B. die Identitätsmatrix.
    37     $p$ ist eine Liste von Polynomen - ein Ideal. *)
    38  dualize::"singular" = "Q must be regular: found Det[Q]==0.";
    39  dualize[ Q_, p_ ] := Block[
    40      { m, n, xv, lv, uv, vars, polys, dual },
    41      If[Det[Q] == 0,
    42        Message[dualize::"singular"],
    43        m = Length[p];
    44        n = Length[Q] - 1;
    45        xv = Table[Subscript[x, i], {i, 0, n}];
    46        lv = Table[Subscript[l, i], {i, 1, m}];
    47        uv = Table[Subscript[u, i], {i, 0, n}];
    48        (* Konstruiere Ideal polys. *)
    49        If[m == 0,
    50          polys = Q.uv,
    51          polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv]
    52          ];
    53        (* Eliminiere die ersten n + 1 + m Variablen xv und lv
    54           aus dem Ideal polys. *)
    55        vars = Join[xv, lv];
    56        dual = GroebnerBasis[polys, uv, vars];
    57        (* Ersetze u mit x im Ergebnis. *)
    58        ReplaceAll[dual, Rule[u, x]]
    59        ]
    60      ]
    61  </textarea>
    62  
    63  <script>
    64    var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), {
    65      mode: 'text/x-mathematica',
    66      lineNumbers: true,
    67      matchBrackets: true
    68    });
    69  </script>
    70  
    71  <p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p>
    72  </article>