github.com/jd-ly/tools@v0.5.7/go/ssa/dom.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file defines algorithms related to dominance.
     8  
     9  // Dominator tree construction ----------------------------------------
    10  //
    11  // We use the algorithm described in Lengauer & Tarjan. 1979.  A fast
    12  // algorithm for finding dominators in a flowgraph.
    13  // http://doi.acm.org/10.1145/357062.357071
    14  //
    15  // We also apply the optimizations to SLT described in Georgiadis et
    16  // al, Finding Dominators in Practice, JGAA 2006,
    17  // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
    18  // to avoid the need for buckets of size > 1.
    19  
    20  import (
    21  	"bytes"
    22  	"fmt"
    23  	"math/big"
    24  	"os"
    25  	"sort"
    26  )
    27  
    28  // Idom returns the block that immediately dominates b:
    29  // its parent in the dominator tree, if any.
    30  // Neither the entry node (b.Index==0) nor recover node
    31  // (b==b.Parent().Recover()) have a parent.
    32  //
    33  func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
    34  
    35  // Dominees returns the list of blocks that b immediately dominates:
    36  // its children in the dominator tree.
    37  //
    38  func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
    39  
    40  // Dominates reports whether b dominates c.
    41  func (b *BasicBlock) Dominates(c *BasicBlock) bool {
    42  	return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
    43  }
    44  
    45  type byDomPreorder []*BasicBlock
    46  
    47  func (a byDomPreorder) Len() int           { return len(a) }
    48  func (a byDomPreorder) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
    49  func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre }
    50  
    51  // DomPreorder returns a new slice containing the blocks of f in
    52  // dominator tree preorder.
    53  //
    54  func (f *Function) DomPreorder() []*BasicBlock {
    55  	n := len(f.Blocks)
    56  	order := make(byDomPreorder, n)
    57  	copy(order, f.Blocks)
    58  	sort.Sort(order)
    59  	return order
    60  }
    61  
    62  // domInfo contains a BasicBlock's dominance information.
    63  type domInfo struct {
    64  	idom      *BasicBlock   // immediate dominator (parent in domtree)
    65  	children  []*BasicBlock // nodes immediately dominated by this one
    66  	pre, post int32         // pre- and post-order numbering within domtree
    67  }
    68  
    69  // ltState holds the working state for Lengauer-Tarjan algorithm
    70  // (during which domInfo.pre is repurposed for CFG DFS preorder number).
    71  type ltState struct {
    72  	// Each slice is indexed by b.Index.
    73  	sdom     []*BasicBlock // b's semidominator
    74  	parent   []*BasicBlock // b's parent in DFS traversal of CFG
    75  	ancestor []*BasicBlock // b's ancestor with least sdom
    76  }
    77  
    78  // dfs implements the depth-first search part of the LT algorithm.
    79  func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 {
    80  	preorder[i] = v
    81  	v.dom.pre = i // For now: DFS preorder of spanning tree of CFG
    82  	i++
    83  	lt.sdom[v.Index] = v
    84  	lt.link(nil, v)
    85  	for _, w := range v.Succs {
    86  		if lt.sdom[w.Index] == nil {
    87  			lt.parent[w.Index] = v
    88  			i = lt.dfs(w, i, preorder)
    89  		}
    90  	}
    91  	return i
    92  }
    93  
    94  // eval implements the EVAL part of the LT algorithm.
    95  func (lt *ltState) eval(v *BasicBlock) *BasicBlock {
    96  	// TODO(adonovan): opt: do path compression per simple LT.
    97  	u := v
    98  	for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] {
    99  		if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre {
   100  			u = v
   101  		}
   102  	}
   103  	return u
   104  }
   105  
   106  // link implements the LINK part of the LT algorithm.
   107  func (lt *ltState) link(v, w *BasicBlock) {
   108  	lt.ancestor[w.Index] = v
   109  }
   110  
   111  // buildDomTree computes the dominator tree of f using the LT algorithm.
   112  // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
   113  //
   114  func buildDomTree(f *Function) {
   115  	// The step numbers refer to the original LT paper; the
   116  	// reordering is due to Georgiadis.
   117  
   118  	// Clear any previous domInfo.
   119  	for _, b := range f.Blocks {
   120  		b.dom = domInfo{}
   121  	}
   122  
   123  	n := len(f.Blocks)
   124  	// Allocate space for 5 contiguous [n]*BasicBlock arrays:
   125  	// sdom, parent, ancestor, preorder, buckets.
   126  	space := make([]*BasicBlock, 5*n)
   127  	lt := ltState{
   128  		sdom:     space[0:n],
   129  		parent:   space[n : 2*n],
   130  		ancestor: space[2*n : 3*n],
   131  	}
   132  
   133  	// Step 1.  Number vertices by depth-first preorder.
   134  	preorder := space[3*n : 4*n]
   135  	root := f.Blocks[0]
   136  	prenum := lt.dfs(root, 0, preorder)
   137  	recover := f.Recover
   138  	if recover != nil {
   139  		lt.dfs(recover, prenum, preorder)
   140  	}
   141  
   142  	buckets := space[4*n : 5*n]
   143  	copy(buckets, preorder)
   144  
   145  	// In reverse preorder...
   146  	for i := int32(n) - 1; i > 0; i-- {
   147  		w := preorder[i]
   148  
   149  		// Step 3. Implicitly define the immediate dominator of each node.
   150  		for v := buckets[i]; v != w; v = buckets[v.dom.pre] {
   151  			u := lt.eval(v)
   152  			if lt.sdom[u.Index].dom.pre < i {
   153  				v.dom.idom = u
   154  			} else {
   155  				v.dom.idom = w
   156  			}
   157  		}
   158  
   159  		// Step 2. Compute the semidominators of all nodes.
   160  		lt.sdom[w.Index] = lt.parent[w.Index]
   161  		for _, v := range w.Preds {
   162  			u := lt.eval(v)
   163  			if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre {
   164  				lt.sdom[w.Index] = lt.sdom[u.Index]
   165  			}
   166  		}
   167  
   168  		lt.link(lt.parent[w.Index], w)
   169  
   170  		if lt.parent[w.Index] == lt.sdom[w.Index] {
   171  			w.dom.idom = lt.parent[w.Index]
   172  		} else {
   173  			buckets[i] = buckets[lt.sdom[w.Index].dom.pre]
   174  			buckets[lt.sdom[w.Index].dom.pre] = w
   175  		}
   176  	}
   177  
   178  	// The final 'Step 3' is now outside the loop.
   179  	for v := buckets[0]; v != root; v = buckets[v.dom.pre] {
   180  		v.dom.idom = root
   181  	}
   182  
   183  	// Step 4. Explicitly define the immediate dominator of each
   184  	// node, in preorder.
   185  	for _, w := range preorder[1:] {
   186  		if w == root || w == recover {
   187  			w.dom.idom = nil
   188  		} else {
   189  			if w.dom.idom != lt.sdom[w.Index] {
   190  				w.dom.idom = w.dom.idom.dom.idom
   191  			}
   192  			// Calculate Children relation as inverse of Idom.
   193  			w.dom.idom.dom.children = append(w.dom.idom.dom.children, w)
   194  		}
   195  	}
   196  
   197  	pre, post := numberDomTree(root, 0, 0)
   198  	if recover != nil {
   199  		numberDomTree(recover, pre, post)
   200  	}
   201  
   202  	// printDomTreeDot(os.Stderr, f)        // debugging
   203  	// printDomTreeText(os.Stderr, root, 0) // debugging
   204  
   205  	if f.Prog.mode&SanityCheckFunctions != 0 {
   206  		sanityCheckDomTree(f)
   207  	}
   208  }
   209  
   210  // numberDomTree sets the pre- and post-order numbers of a depth-first
   211  // traversal of the dominator tree rooted at v.  These are used to
   212  // answer dominance queries in constant time.
   213  //
   214  func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
   215  	v.dom.pre = pre
   216  	pre++
   217  	for _, child := range v.dom.children {
   218  		pre, post = numberDomTree(child, pre, post)
   219  	}
   220  	v.dom.post = post
   221  	post++
   222  	return pre, post
   223  }
   224  
   225  // Testing utilities ----------------------------------------
   226  
   227  // sanityCheckDomTree checks the correctness of the dominator tree
   228  // computed by the LT algorithm by comparing against the dominance
   229  // relation computed by a naive Kildall-style forward dataflow
   230  // analysis (Algorithm 10.16 from the "Dragon" book).
   231  //
   232  func sanityCheckDomTree(f *Function) {
   233  	n := len(f.Blocks)
   234  
   235  	// D[i] is the set of blocks that dominate f.Blocks[i],
   236  	// represented as a bit-set of block indices.
   237  	D := make([]big.Int, n)
   238  
   239  	one := big.NewInt(1)
   240  
   241  	// all is the set of all blocks; constant.
   242  	var all big.Int
   243  	all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
   244  
   245  	// Initialization.
   246  	for i, b := range f.Blocks {
   247  		if i == 0 || b == f.Recover {
   248  			// A root is dominated only by itself.
   249  			D[i].SetBit(&D[0], 0, 1)
   250  		} else {
   251  			// All other blocks are (initially) dominated
   252  			// by every block.
   253  			D[i].Set(&all)
   254  		}
   255  	}
   256  
   257  	// Iteration until fixed point.
   258  	for changed := true; changed; {
   259  		changed = false
   260  		for i, b := range f.Blocks {
   261  			if i == 0 || b == f.Recover {
   262  				continue
   263  			}
   264  			// Compute intersection across predecessors.
   265  			var x big.Int
   266  			x.Set(&all)
   267  			for _, pred := range b.Preds {
   268  				x.And(&x, &D[pred.Index])
   269  			}
   270  			x.SetBit(&x, i, 1) // a block always dominates itself.
   271  			if D[i].Cmp(&x) != 0 {
   272  				D[i].Set(&x)
   273  				changed = true
   274  			}
   275  		}
   276  	}
   277  
   278  	// Check the entire relation.  O(n^2).
   279  	// The Recover block (if any) must be treated specially so we skip it.
   280  	ok := true
   281  	for i := 0; i < n; i++ {
   282  		for j := 0; j < n; j++ {
   283  			b, c := f.Blocks[i], f.Blocks[j]
   284  			if c == f.Recover {
   285  				continue
   286  			}
   287  			actual := b.Dominates(c)
   288  			expected := D[j].Bit(i) == 1
   289  			if actual != expected {
   290  				fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
   291  				ok = false
   292  			}
   293  		}
   294  	}
   295  
   296  	preorder := f.DomPreorder()
   297  	for _, b := range f.Blocks {
   298  		if got := preorder[b.dom.pre]; got != b {
   299  			fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
   300  			ok = false
   301  		}
   302  	}
   303  
   304  	if !ok {
   305  		panic("sanityCheckDomTree failed for " + f.String())
   306  	}
   307  
   308  }
   309  
   310  // Printing functions ----------------------------------------
   311  
   312  // printDomTree prints the dominator tree as text, using indentation.
   313  func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
   314  	fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
   315  	for _, child := range v.dom.children {
   316  		printDomTreeText(buf, child, indent+1)
   317  	}
   318  }
   319  
   320  // printDomTreeDot prints the dominator tree of f in AT&T GraphViz
   321  // (.dot) format.
   322  func printDomTreeDot(buf *bytes.Buffer, f *Function) {
   323  	fmt.Fprintln(buf, "//", f)
   324  	fmt.Fprintln(buf, "digraph domtree {")
   325  	for i, b := range f.Blocks {
   326  		v := b.dom
   327  		fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
   328  		// TODO(adonovan): improve appearance of edges
   329  		// belonging to both dominator tree and CFG.
   330  
   331  		// Dominator tree edge.
   332  		if i != 0 {
   333  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
   334  		}
   335  		// CFG edges.
   336  		for _, pred := range b.Preds {
   337  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
   338  		}
   339  	}
   340  	fmt.Fprintln(buf, "}")
   341  }