github.com/jd-ly/tools@v0.5.7/go/ssa/func.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file implements the Function and BasicBlock types.
     8  
     9  import (
    10  	"bytes"
    11  	"fmt"
    12  	"go/ast"
    13  	"go/token"
    14  	"go/types"
    15  	"io"
    16  	"os"
    17  	"strings"
    18  )
    19  
    20  // addEdge adds a control-flow graph edge from from to to.
    21  func addEdge(from, to *BasicBlock) {
    22  	from.Succs = append(from.Succs, to)
    23  	to.Preds = append(to.Preds, from)
    24  }
    25  
    26  // Parent returns the function that contains block b.
    27  func (b *BasicBlock) Parent() *Function { return b.parent }
    28  
    29  // String returns a human-readable label of this block.
    30  // It is not guaranteed unique within the function.
    31  //
    32  func (b *BasicBlock) String() string {
    33  	return fmt.Sprintf("%d", b.Index)
    34  }
    35  
    36  // emit appends an instruction to the current basic block.
    37  // If the instruction defines a Value, it is returned.
    38  //
    39  func (b *BasicBlock) emit(i Instruction) Value {
    40  	i.setBlock(b)
    41  	b.Instrs = append(b.Instrs, i)
    42  	v, _ := i.(Value)
    43  	return v
    44  }
    45  
    46  // predIndex returns the i such that b.Preds[i] == c or panics if
    47  // there is none.
    48  func (b *BasicBlock) predIndex(c *BasicBlock) int {
    49  	for i, pred := range b.Preds {
    50  		if pred == c {
    51  			return i
    52  		}
    53  	}
    54  	panic(fmt.Sprintf("no edge %s -> %s", c, b))
    55  }
    56  
    57  // hasPhi returns true if b.Instrs contains φ-nodes.
    58  func (b *BasicBlock) hasPhi() bool {
    59  	_, ok := b.Instrs[0].(*Phi)
    60  	return ok
    61  }
    62  
    63  // phis returns the prefix of b.Instrs containing all the block's φ-nodes.
    64  func (b *BasicBlock) phis() []Instruction {
    65  	for i, instr := range b.Instrs {
    66  		if _, ok := instr.(*Phi); !ok {
    67  			return b.Instrs[:i]
    68  		}
    69  	}
    70  	return nil // unreachable in well-formed blocks
    71  }
    72  
    73  // replacePred replaces all occurrences of p in b's predecessor list with q.
    74  // Ordinarily there should be at most one.
    75  //
    76  func (b *BasicBlock) replacePred(p, q *BasicBlock) {
    77  	for i, pred := range b.Preds {
    78  		if pred == p {
    79  			b.Preds[i] = q
    80  		}
    81  	}
    82  }
    83  
    84  // replaceSucc replaces all occurrences of p in b's successor list with q.
    85  // Ordinarily there should be at most one.
    86  //
    87  func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
    88  	for i, succ := range b.Succs {
    89  		if succ == p {
    90  			b.Succs[i] = q
    91  		}
    92  	}
    93  }
    94  
    95  // removePred removes all occurrences of p in b's
    96  // predecessor list and φ-nodes.
    97  // Ordinarily there should be at most one.
    98  //
    99  func (b *BasicBlock) removePred(p *BasicBlock) {
   100  	phis := b.phis()
   101  
   102  	// We must preserve edge order for φ-nodes.
   103  	j := 0
   104  	for i, pred := range b.Preds {
   105  		if pred != p {
   106  			b.Preds[j] = b.Preds[i]
   107  			// Strike out φ-edge too.
   108  			for _, instr := range phis {
   109  				phi := instr.(*Phi)
   110  				phi.Edges[j] = phi.Edges[i]
   111  			}
   112  			j++
   113  		}
   114  	}
   115  	// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
   116  	for i := j; i < len(b.Preds); i++ {
   117  		b.Preds[i] = nil
   118  		for _, instr := range phis {
   119  			instr.(*Phi).Edges[i] = nil
   120  		}
   121  	}
   122  	b.Preds = b.Preds[:j]
   123  	for _, instr := range phis {
   124  		phi := instr.(*Phi)
   125  		phi.Edges = phi.Edges[:j]
   126  	}
   127  }
   128  
   129  // Destinations associated with unlabelled for/switch/select stmts.
   130  // We push/pop one of these as we enter/leave each construct and for
   131  // each BranchStmt we scan for the innermost target of the right type.
   132  //
   133  type targets struct {
   134  	tail         *targets // rest of stack
   135  	_break       *BasicBlock
   136  	_continue    *BasicBlock
   137  	_fallthrough *BasicBlock
   138  }
   139  
   140  // Destinations associated with a labelled block.
   141  // We populate these as labels are encountered in forward gotos or
   142  // labelled statements.
   143  //
   144  type lblock struct {
   145  	_goto     *BasicBlock
   146  	_break    *BasicBlock
   147  	_continue *BasicBlock
   148  }
   149  
   150  // labelledBlock returns the branch target associated with the
   151  // specified label, creating it if needed.
   152  //
   153  func (f *Function) labelledBlock(label *ast.Ident) *lblock {
   154  	lb := f.lblocks[label.Obj]
   155  	if lb == nil {
   156  		lb = &lblock{_goto: f.newBasicBlock(label.Name)}
   157  		if f.lblocks == nil {
   158  			f.lblocks = make(map[*ast.Object]*lblock)
   159  		}
   160  		f.lblocks[label.Obj] = lb
   161  	}
   162  	return lb
   163  }
   164  
   165  // addParam adds a (non-escaping) parameter to f.Params of the
   166  // specified name, type and source position.
   167  //
   168  func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
   169  	v := &Parameter{
   170  		name:   name,
   171  		typ:    typ,
   172  		pos:    pos,
   173  		parent: f,
   174  	}
   175  	f.Params = append(f.Params, v)
   176  	return v
   177  }
   178  
   179  func (f *Function) addParamObj(obj types.Object) *Parameter {
   180  	name := obj.Name()
   181  	if name == "" {
   182  		name = fmt.Sprintf("arg%d", len(f.Params))
   183  	}
   184  	param := f.addParam(name, obj.Type(), obj.Pos())
   185  	param.object = obj
   186  	return param
   187  }
   188  
   189  // addSpilledParam declares a parameter that is pre-spilled to the
   190  // stack; the function body will load/store the spilled location.
   191  // Subsequent lifting will eliminate spills where possible.
   192  //
   193  func (f *Function) addSpilledParam(obj types.Object) {
   194  	param := f.addParamObj(obj)
   195  	spill := &Alloc{Comment: obj.Name()}
   196  	spill.setType(types.NewPointer(obj.Type()))
   197  	spill.setPos(obj.Pos())
   198  	f.objects[obj] = spill
   199  	f.Locals = append(f.Locals, spill)
   200  	f.emit(spill)
   201  	f.emit(&Store{Addr: spill, Val: param})
   202  }
   203  
   204  // startBody initializes the function prior to generating SSA code for its body.
   205  // Precondition: f.Type() already set.
   206  //
   207  func (f *Function) startBody() {
   208  	f.currentBlock = f.newBasicBlock("entry")
   209  	f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
   210  }
   211  
   212  // createSyntacticParams populates f.Params and generates code (spills
   213  // and named result locals) for all the parameters declared in the
   214  // syntax.  In addition it populates the f.objects mapping.
   215  //
   216  // Preconditions:
   217  // f.startBody() was called.
   218  // Postcondition:
   219  // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
   220  //
   221  func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
   222  	// Receiver (at most one inner iteration).
   223  	if recv != nil {
   224  		for _, field := range recv.List {
   225  			for _, n := range field.Names {
   226  				f.addSpilledParam(f.Pkg.info.Defs[n])
   227  			}
   228  			// Anonymous receiver?  No need to spill.
   229  			if field.Names == nil {
   230  				f.addParamObj(f.Signature.Recv())
   231  			}
   232  		}
   233  	}
   234  
   235  	// Parameters.
   236  	if functype.Params != nil {
   237  		n := len(f.Params) // 1 if has recv, 0 otherwise
   238  		for _, field := range functype.Params.List {
   239  			for _, n := range field.Names {
   240  				f.addSpilledParam(f.Pkg.info.Defs[n])
   241  			}
   242  			// Anonymous parameter?  No need to spill.
   243  			if field.Names == nil {
   244  				f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
   245  			}
   246  		}
   247  	}
   248  
   249  	// Named results.
   250  	if functype.Results != nil {
   251  		for _, field := range functype.Results.List {
   252  			// Implicit "var" decl of locals for named results.
   253  			for _, n := range field.Names {
   254  				f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
   255  			}
   256  		}
   257  	}
   258  }
   259  
   260  type setNumable interface {
   261  	setNum(int)
   262  }
   263  
   264  // numberRegisters assigns numbers to all SSA registers
   265  // (value-defining Instructions) in f, to aid debugging.
   266  // (Non-Instruction Values are named at construction.)
   267  //
   268  func numberRegisters(f *Function) {
   269  	v := 0
   270  	for _, b := range f.Blocks {
   271  		for _, instr := range b.Instrs {
   272  			switch instr.(type) {
   273  			case Value:
   274  				instr.(setNumable).setNum(v)
   275  				v++
   276  			}
   277  		}
   278  	}
   279  }
   280  
   281  // buildReferrers populates the def/use information in all non-nil
   282  // Value.Referrers slice.
   283  // Precondition: all such slices are initially empty.
   284  func buildReferrers(f *Function) {
   285  	var rands []*Value
   286  	for _, b := range f.Blocks {
   287  		for _, instr := range b.Instrs {
   288  			rands = instr.Operands(rands[:0]) // recycle storage
   289  			for _, rand := range rands {
   290  				if r := *rand; r != nil {
   291  					if ref := r.Referrers(); ref != nil {
   292  						*ref = append(*ref, instr)
   293  					}
   294  				}
   295  			}
   296  		}
   297  	}
   298  }
   299  
   300  // finishBody() finalizes the function after SSA code generation of its body.
   301  func (f *Function) finishBody() {
   302  	f.objects = nil
   303  	f.currentBlock = nil
   304  	f.lblocks = nil
   305  
   306  	// Don't pin the AST in memory (except in debug mode).
   307  	if n := f.syntax; n != nil && !f.debugInfo() {
   308  		f.syntax = extentNode{n.Pos(), n.End()}
   309  	}
   310  
   311  	// Remove from f.Locals any Allocs that escape to the heap.
   312  	j := 0
   313  	for _, l := range f.Locals {
   314  		if !l.Heap {
   315  			f.Locals[j] = l
   316  			j++
   317  		}
   318  	}
   319  	// Nil out f.Locals[j:] to aid GC.
   320  	for i := j; i < len(f.Locals); i++ {
   321  		f.Locals[i] = nil
   322  	}
   323  	f.Locals = f.Locals[:j]
   324  
   325  	optimizeBlocks(f)
   326  
   327  	buildReferrers(f)
   328  
   329  	buildDomTree(f)
   330  
   331  	if f.Prog.mode&NaiveForm == 0 {
   332  		// For debugging pre-state of lifting pass:
   333  		// numberRegisters(f)
   334  		// f.WriteTo(os.Stderr)
   335  		lift(f)
   336  	}
   337  
   338  	f.namedResults = nil // (used by lifting)
   339  
   340  	numberRegisters(f)
   341  
   342  	if f.Prog.mode&PrintFunctions != 0 {
   343  		printMu.Lock()
   344  		f.WriteTo(os.Stdout)
   345  		printMu.Unlock()
   346  	}
   347  
   348  	if f.Prog.mode&SanityCheckFunctions != 0 {
   349  		mustSanityCheck(f, nil)
   350  	}
   351  }
   352  
   353  // removeNilBlocks eliminates nils from f.Blocks and updates each
   354  // BasicBlock.Index.  Use this after any pass that may delete blocks.
   355  //
   356  func (f *Function) removeNilBlocks() {
   357  	j := 0
   358  	for _, b := range f.Blocks {
   359  		if b != nil {
   360  			b.Index = j
   361  			f.Blocks[j] = b
   362  			j++
   363  		}
   364  	}
   365  	// Nil out f.Blocks[j:] to aid GC.
   366  	for i := j; i < len(f.Blocks); i++ {
   367  		f.Blocks[i] = nil
   368  	}
   369  	f.Blocks = f.Blocks[:j]
   370  }
   371  
   372  // SetDebugMode sets the debug mode for package pkg.  If true, all its
   373  // functions will include full debug info.  This greatly increases the
   374  // size of the instruction stream, and causes Functions to depend upon
   375  // the ASTs, potentially keeping them live in memory for longer.
   376  //
   377  func (pkg *Package) SetDebugMode(debug bool) {
   378  	// TODO(adonovan): do we want ast.File granularity?
   379  	pkg.debug = debug
   380  }
   381  
   382  // debugInfo reports whether debug info is wanted for this function.
   383  func (f *Function) debugInfo() bool {
   384  	return f.Pkg != nil && f.Pkg.debug
   385  }
   386  
   387  // addNamedLocal creates a local variable, adds it to function f and
   388  // returns it.  Its name and type are taken from obj.  Subsequent
   389  // calls to f.lookup(obj) will return the same local.
   390  //
   391  func (f *Function) addNamedLocal(obj types.Object) *Alloc {
   392  	l := f.addLocal(obj.Type(), obj.Pos())
   393  	l.Comment = obj.Name()
   394  	f.objects[obj] = l
   395  	return l
   396  }
   397  
   398  func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
   399  	return f.addNamedLocal(f.Pkg.info.Defs[id])
   400  }
   401  
   402  // addLocal creates an anonymous local variable of type typ, adds it
   403  // to function f and returns it.  pos is the optional source location.
   404  //
   405  func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
   406  	v := &Alloc{}
   407  	v.setType(types.NewPointer(typ))
   408  	v.setPos(pos)
   409  	f.Locals = append(f.Locals, v)
   410  	f.emit(v)
   411  	return v
   412  }
   413  
   414  // lookup returns the address of the named variable identified by obj
   415  // that is local to function f or one of its enclosing functions.
   416  // If escaping, the reference comes from a potentially escaping pointer
   417  // expression and the referent must be heap-allocated.
   418  //
   419  func (f *Function) lookup(obj types.Object, escaping bool) Value {
   420  	if v, ok := f.objects[obj]; ok {
   421  		if alloc, ok := v.(*Alloc); ok && escaping {
   422  			alloc.Heap = true
   423  		}
   424  		return v // function-local var (address)
   425  	}
   426  
   427  	// Definition must be in an enclosing function;
   428  	// plumb it through intervening closures.
   429  	if f.parent == nil {
   430  		panic("no ssa.Value for " + obj.String())
   431  	}
   432  	outer := f.parent.lookup(obj, true) // escaping
   433  	v := &FreeVar{
   434  		name:   obj.Name(),
   435  		typ:    outer.Type(),
   436  		pos:    outer.Pos(),
   437  		outer:  outer,
   438  		parent: f,
   439  	}
   440  	f.objects[obj] = v
   441  	f.FreeVars = append(f.FreeVars, v)
   442  	return v
   443  }
   444  
   445  // emit emits the specified instruction to function f.
   446  func (f *Function) emit(instr Instruction) Value {
   447  	return f.currentBlock.emit(instr)
   448  }
   449  
   450  // RelString returns the full name of this function, qualified by
   451  // package name, receiver type, etc.
   452  //
   453  // The specific formatting rules are not guaranteed and may change.
   454  //
   455  // Examples:
   456  //      "math.IsNaN"                  // a package-level function
   457  //      "(*bytes.Buffer).Bytes"       // a declared method or a wrapper
   458  //      "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
   459  //      "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
   460  //      "main.main$1"                 // an anonymous function in main
   461  //      "main.init#1"                 // a declared init function
   462  //      "main.init"                   // the synthesized package initializer
   463  //
   464  // When these functions are referred to from within the same package
   465  // (i.e. from == f.Pkg.Object), they are rendered without the package path.
   466  // For example: "IsNaN", "(*Buffer).Bytes", etc.
   467  //
   468  // All non-synthetic functions have distinct package-qualified names.
   469  // (But two methods may have the same name "(T).f" if one is a synthetic
   470  // wrapper promoting a non-exported method "f" from another package; in
   471  // that case, the strings are equal but the identifiers "f" are distinct.)
   472  //
   473  func (f *Function) RelString(from *types.Package) string {
   474  	// Anonymous?
   475  	if f.parent != nil {
   476  		// An anonymous function's Name() looks like "parentName$1",
   477  		// but its String() should include the type/package/etc.
   478  		parent := f.parent.RelString(from)
   479  		for i, anon := range f.parent.AnonFuncs {
   480  			if anon == f {
   481  				return fmt.Sprintf("%s$%d", parent, 1+i)
   482  			}
   483  		}
   484  
   485  		return f.name // should never happen
   486  	}
   487  
   488  	// Method (declared or wrapper)?
   489  	if recv := f.Signature.Recv(); recv != nil {
   490  		return f.relMethod(from, recv.Type())
   491  	}
   492  
   493  	// Thunk?
   494  	if f.method != nil {
   495  		return f.relMethod(from, f.method.Recv())
   496  	}
   497  
   498  	// Bound?
   499  	if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
   500  		return f.relMethod(from, f.FreeVars[0].Type())
   501  	}
   502  
   503  	// Package-level function?
   504  	// Prefix with package name for cross-package references only.
   505  	if p := f.pkg(); p != nil && p != from {
   506  		return fmt.Sprintf("%s.%s", p.Path(), f.name)
   507  	}
   508  
   509  	// Unknown.
   510  	return f.name
   511  }
   512  
   513  func (f *Function) relMethod(from *types.Package, recv types.Type) string {
   514  	return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
   515  }
   516  
   517  // writeSignature writes to buf the signature sig in declaration syntax.
   518  func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
   519  	buf.WriteString("func ")
   520  	if recv := sig.Recv(); recv != nil {
   521  		buf.WriteString("(")
   522  		if n := params[0].Name(); n != "" {
   523  			buf.WriteString(n)
   524  			buf.WriteString(" ")
   525  		}
   526  		types.WriteType(buf, params[0].Type(), types.RelativeTo(from))
   527  		buf.WriteString(") ")
   528  	}
   529  	buf.WriteString(name)
   530  	types.WriteSignature(buf, sig, types.RelativeTo(from))
   531  }
   532  
   533  func (f *Function) pkg() *types.Package {
   534  	if f.Pkg != nil {
   535  		return f.Pkg.Pkg
   536  	}
   537  	return nil
   538  }
   539  
   540  var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
   541  
   542  func (f *Function) WriteTo(w io.Writer) (int64, error) {
   543  	var buf bytes.Buffer
   544  	WriteFunction(&buf, f)
   545  	n, err := w.Write(buf.Bytes())
   546  	return int64(n), err
   547  }
   548  
   549  // WriteFunction writes to buf a human-readable "disassembly" of f.
   550  func WriteFunction(buf *bytes.Buffer, f *Function) {
   551  	fmt.Fprintf(buf, "# Name: %s\n", f.String())
   552  	if f.Pkg != nil {
   553  		fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
   554  	}
   555  	if syn := f.Synthetic; syn != "" {
   556  		fmt.Fprintln(buf, "# Synthetic:", syn)
   557  	}
   558  	if pos := f.Pos(); pos.IsValid() {
   559  		fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
   560  	}
   561  
   562  	if f.parent != nil {
   563  		fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
   564  	}
   565  
   566  	if f.Recover != nil {
   567  		fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
   568  	}
   569  
   570  	from := f.pkg()
   571  
   572  	if f.FreeVars != nil {
   573  		buf.WriteString("# Free variables:\n")
   574  		for i, fv := range f.FreeVars {
   575  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
   576  		}
   577  	}
   578  
   579  	if len(f.Locals) > 0 {
   580  		buf.WriteString("# Locals:\n")
   581  		for i, l := range f.Locals {
   582  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
   583  		}
   584  	}
   585  	writeSignature(buf, from, f.Name(), f.Signature, f.Params)
   586  	buf.WriteString(":\n")
   587  
   588  	if f.Blocks == nil {
   589  		buf.WriteString("\t(external)\n")
   590  	}
   591  
   592  	// NB. column calculations are confused by non-ASCII
   593  	// characters and assume 8-space tabs.
   594  	const punchcard = 80 // for old time's sake.
   595  	const tabwidth = 8
   596  	for _, b := range f.Blocks {
   597  		if b == nil {
   598  			// Corrupt CFG.
   599  			fmt.Fprintf(buf, ".nil:\n")
   600  			continue
   601  		}
   602  		n, _ := fmt.Fprintf(buf, "%d:", b.Index)
   603  		bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
   604  		fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)
   605  
   606  		if false { // CFG debugging
   607  			fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
   608  		}
   609  		for _, instr := range b.Instrs {
   610  			buf.WriteString("\t")
   611  			switch v := instr.(type) {
   612  			case Value:
   613  				l := punchcard - tabwidth
   614  				// Left-align the instruction.
   615  				if name := v.Name(); name != "" {
   616  					n, _ := fmt.Fprintf(buf, "%s = ", name)
   617  					l -= n
   618  				}
   619  				n, _ := buf.WriteString(instr.String())
   620  				l -= n
   621  				// Right-align the type if there's space.
   622  				if t := v.Type(); t != nil {
   623  					buf.WriteByte(' ')
   624  					ts := relType(t, from)
   625  					l -= len(ts) + len("  ") // (spaces before and after type)
   626  					if l > 0 {
   627  						fmt.Fprintf(buf, "%*s", l, "")
   628  					}
   629  					buf.WriteString(ts)
   630  				}
   631  			case nil:
   632  				// Be robust against bad transforms.
   633  				buf.WriteString("<deleted>")
   634  			default:
   635  				buf.WriteString(instr.String())
   636  			}
   637  			buf.WriteString("\n")
   638  		}
   639  	}
   640  	fmt.Fprintf(buf, "\n")
   641  }
   642  
   643  // newBasicBlock adds to f a new basic block and returns it.  It does
   644  // not automatically become the current block for subsequent calls to emit.
   645  // comment is an optional string for more readable debugging output.
   646  //
   647  func (f *Function) newBasicBlock(comment string) *BasicBlock {
   648  	b := &BasicBlock{
   649  		Index:   len(f.Blocks),
   650  		Comment: comment,
   651  		parent:  f,
   652  	}
   653  	b.Succs = b.succs2[:0]
   654  	f.Blocks = append(f.Blocks, b)
   655  	return b
   656  }
   657  
   658  // NewFunction returns a new synthetic Function instance belonging to
   659  // prog, with its name and signature fields set as specified.
   660  //
   661  // The caller is responsible for initializing the remaining fields of
   662  // the function object, e.g. Pkg, Params, Blocks.
   663  //
   664  // It is practically impossible for clients to construct well-formed
   665  // SSA functions/packages/programs directly, so we assume this is the
   666  // job of the Builder alone.  NewFunction exists to provide clients a
   667  // little flexibility.  For example, analysis tools may wish to
   668  // construct fake Functions for the root of the callgraph, a fake
   669  // "reflect" package, etc.
   670  //
   671  // TODO(adonovan): think harder about the API here.
   672  //
   673  func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
   674  	return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
   675  }
   676  
   677  type extentNode [2]token.Pos
   678  
   679  func (n extentNode) Pos() token.Pos { return n[0] }
   680  func (n extentNode) End() token.Pos { return n[1] }
   681  
   682  // Syntax returns an ast.Node whose Pos/End methods provide the
   683  // lexical extent of the function if it was defined by Go source code
   684  // (f.Synthetic==""), or nil otherwise.
   685  //
   686  // If f was built with debug information (see Package.SetDebugRef),
   687  // the result is the *ast.FuncDecl or *ast.FuncLit that declared the
   688  // function.  Otherwise, it is an opaque Node providing only position
   689  // information; this avoids pinning the AST in memory.
   690  //
   691  func (f *Function) Syntax() ast.Node { return f.syntax }