github.com/jd-ly/tools@v0.5.7/go/ssa/ssa.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 // This package defines a high-level intermediate representation for 8 // Go programs using static single-assignment (SSA) form. 9 10 import ( 11 "fmt" 12 "go/ast" 13 "go/constant" 14 "go/token" 15 "go/types" 16 "sync" 17 18 "github.com/jd-ly/tools/go/types/typeutil" 19 ) 20 21 // A Program is a partial or complete Go program converted to SSA form. 22 type Program struct { 23 Fset *token.FileSet // position information for the files of this Program 24 imported map[string]*Package // all importable Packages, keyed by import path 25 packages map[*types.Package]*Package // all loaded Packages, keyed by object 26 mode BuilderMode // set of mode bits for SSA construction 27 MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets 28 29 methodsMu sync.Mutex // guards the following maps: 30 methodSets typeutil.Map // maps type to its concrete methodSet 31 runtimeTypes typeutil.Map // types for which rtypes are needed 32 canon typeutil.Map // type canonicalization map 33 bounds map[*types.Func]*Function // bounds for curried x.Method closures 34 thunks map[selectionKey]*Function // thunks for T.Method expressions 35 } 36 37 // A Package is a single analyzed Go package containing Members for 38 // all package-level functions, variables, constants and types it 39 // declares. These may be accessed directly via Members, or via the 40 // type-specific accessor methods Func, Type, Var and Const. 41 // 42 // Members also contains entries for "init" (the synthetic package 43 // initializer) and "init#%d", the nth declared init function, 44 // and unspecified other things too. 45 // 46 type Package struct { 47 Prog *Program // the owning program 48 Pkg *types.Package // the corresponding go/types.Package 49 Members map[string]Member // all package members keyed by name (incl. init and init#%d) 50 values map[types.Object]Value // package members (incl. types and methods), keyed by object 51 init *Function // Func("init"); the package's init function 52 debug bool // include full debug info in this package 53 54 // The following fields are set transiently, then cleared 55 // after building. 56 buildOnce sync.Once // ensures package building occurs once 57 ninit int32 // number of init functions 58 info *types.Info // package type information 59 files []*ast.File // package ASTs 60 } 61 62 // A Member is a member of a Go package, implemented by *NamedConst, 63 // *Global, *Function, or *Type; they are created by package-level 64 // const, var, func and type declarations respectively. 65 // 66 type Member interface { 67 Name() string // declared name of the package member 68 String() string // package-qualified name of the package member 69 RelString(*types.Package) string // like String, but relative refs are unqualified 70 Object() types.Object // typechecker's object for this member, if any 71 Pos() token.Pos // position of member's declaration, if known 72 Type() types.Type // type of the package member 73 Token() token.Token // token.{VAR,FUNC,CONST,TYPE} 74 Package() *Package // the containing package 75 } 76 77 // A Type is a Member of a Package representing a package-level named type. 78 type Type struct { 79 object *types.TypeName 80 pkg *Package 81 } 82 83 // A NamedConst is a Member of a Package representing a package-level 84 // named constant. 85 // 86 // Pos() returns the position of the declaring ast.ValueSpec.Names[*] 87 // identifier. 88 // 89 // NB: a NamedConst is not a Value; it contains a constant Value, which 90 // it augments with the name and position of its 'const' declaration. 91 // 92 type NamedConst struct { 93 object *types.Const 94 Value *Const 95 pkg *Package 96 } 97 98 // A Value is an SSA value that can be referenced by an instruction. 99 type Value interface { 100 // Name returns the name of this value, and determines how 101 // this Value appears when used as an operand of an 102 // Instruction. 103 // 104 // This is the same as the source name for Parameters, 105 // Builtins, Functions, FreeVars, Globals. 106 // For constants, it is a representation of the constant's value 107 // and type. For all other Values this is the name of the 108 // virtual register defined by the instruction. 109 // 110 // The name of an SSA Value is not semantically significant, 111 // and may not even be unique within a function. 112 Name() string 113 114 // If this value is an Instruction, String returns its 115 // disassembled form; otherwise it returns unspecified 116 // human-readable information about the Value, such as its 117 // kind, name and type. 118 String() string 119 120 // Type returns the type of this value. Many instructions 121 // (e.g. IndexAddr) change their behaviour depending on the 122 // types of their operands. 123 Type() types.Type 124 125 // Parent returns the function to which this Value belongs. 126 // It returns nil for named Functions, Builtin, Const and Global. 127 Parent() *Function 128 129 // Referrers returns the list of instructions that have this 130 // value as one of their operands; it may contain duplicates 131 // if an instruction has a repeated operand. 132 // 133 // Referrers actually returns a pointer through which the 134 // caller may perform mutations to the object's state. 135 // 136 // Referrers is currently only defined if Parent()!=nil, 137 // i.e. for the function-local values FreeVar, Parameter, 138 // Functions (iff anonymous) and all value-defining instructions. 139 // It returns nil for named Functions, Builtin, Const and Global. 140 // 141 // Instruction.Operands contains the inverse of this relation. 142 Referrers() *[]Instruction 143 144 // Pos returns the location of the AST token most closely 145 // associated with the operation that gave rise to this value, 146 // or token.NoPos if it was not explicit in the source. 147 // 148 // For each ast.Node type, a particular token is designated as 149 // the closest location for the expression, e.g. the Lparen 150 // for an *ast.CallExpr. This permits a compact but 151 // approximate mapping from Values to source positions for use 152 // in diagnostic messages, for example. 153 // 154 // (Do not use this position to determine which Value 155 // corresponds to an ast.Expr; use Function.ValueForExpr 156 // instead. NB: it requires that the function was built with 157 // debug information.) 158 Pos() token.Pos 159 } 160 161 // An Instruction is an SSA instruction that computes a new Value or 162 // has some effect. 163 // 164 // An Instruction that defines a value (e.g. BinOp) also implements 165 // the Value interface; an Instruction that only has an effect (e.g. Store) 166 // does not. 167 // 168 type Instruction interface { 169 // String returns the disassembled form of this value. 170 // 171 // Examples of Instructions that are Values: 172 // "x + y" (BinOp) 173 // "len([])" (Call) 174 // Note that the name of the Value is not printed. 175 // 176 // Examples of Instructions that are not Values: 177 // "return x" (Return) 178 // "*y = x" (Store) 179 // 180 // (The separation Value.Name() from Value.String() is useful 181 // for some analyses which distinguish the operation from the 182 // value it defines, e.g., 'y = local int' is both an allocation 183 // of memory 'local int' and a definition of a pointer y.) 184 String() string 185 186 // Parent returns the function to which this instruction 187 // belongs. 188 Parent() *Function 189 190 // Block returns the basic block to which this instruction 191 // belongs. 192 Block() *BasicBlock 193 194 // setBlock sets the basic block to which this instruction belongs. 195 setBlock(*BasicBlock) 196 197 // Operands returns the operands of this instruction: the 198 // set of Values it references. 199 // 200 // Specifically, it appends their addresses to rands, a 201 // user-provided slice, and returns the resulting slice, 202 // permitting avoidance of memory allocation. 203 // 204 // The operands are appended in undefined order, but the order 205 // is consistent for a given Instruction; the addresses are 206 // always non-nil but may point to a nil Value. Clients may 207 // store through the pointers, e.g. to effect a value 208 // renaming. 209 // 210 // Value.Referrers is a subset of the inverse of this 211 // relation. (Referrers are not tracked for all types of 212 // Values.) 213 Operands(rands []*Value) []*Value 214 215 // Pos returns the location of the AST token most closely 216 // associated with the operation that gave rise to this 217 // instruction, or token.NoPos if it was not explicit in the 218 // source. 219 // 220 // For each ast.Node type, a particular token is designated as 221 // the closest location for the expression, e.g. the Go token 222 // for an *ast.GoStmt. This permits a compact but approximate 223 // mapping from Instructions to source positions for use in 224 // diagnostic messages, for example. 225 // 226 // (Do not use this position to determine which Instruction 227 // corresponds to an ast.Expr; see the notes for Value.Pos. 228 // This position may be used to determine which non-Value 229 // Instruction corresponds to some ast.Stmts, but not all: If 230 // and Jump instructions have no Pos(), for example.) 231 Pos() token.Pos 232 } 233 234 // A Node is a node in the SSA value graph. Every concrete type that 235 // implements Node is also either a Value, an Instruction, or both. 236 // 237 // Node contains the methods common to Value and Instruction, plus the 238 // Operands and Referrers methods generalized to return nil for 239 // non-Instructions and non-Values, respectively. 240 // 241 // Node is provided to simplify SSA graph algorithms. Clients should 242 // use the more specific and informative Value or Instruction 243 // interfaces where appropriate. 244 // 245 type Node interface { 246 // Common methods: 247 String() string 248 Pos() token.Pos 249 Parent() *Function 250 251 // Partial methods: 252 Operands(rands []*Value) []*Value // nil for non-Instructions 253 Referrers() *[]Instruction // nil for non-Values 254 } 255 256 // Function represents the parameters, results, and code of a function 257 // or method. 258 // 259 // If Blocks is nil, this indicates an external function for which no 260 // Go source code is available. In this case, FreeVars and Locals 261 // are nil too. Clients performing whole-program analysis must 262 // handle external functions specially. 263 // 264 // Blocks contains the function's control-flow graph (CFG). 265 // Blocks[0] is the function entry point; block order is not otherwise 266 // semantically significant, though it may affect the readability of 267 // the disassembly. 268 // To iterate over the blocks in dominance order, use DomPreorder(). 269 // 270 // Recover is an optional second entry point to which control resumes 271 // after a recovered panic. The Recover block may contain only a return 272 // statement, preceded by a load of the function's named return 273 // parameters, if any. 274 // 275 // A nested function (Parent()!=nil) that refers to one or more 276 // lexically enclosing local variables ("free variables") has FreeVars. 277 // Such functions cannot be called directly but require a 278 // value created by MakeClosure which, via its Bindings, supplies 279 // values for these parameters. 280 // 281 // If the function is a method (Signature.Recv() != nil) then the first 282 // element of Params is the receiver parameter. 283 // 284 // A Go package may declare many functions called "init". 285 // For each one, Object().Name() returns "init" but Name() returns 286 // "init#1", etc, in declaration order. 287 // 288 // Pos() returns the declaring ast.FuncLit.Type.Func or the position 289 // of the ast.FuncDecl.Name, if the function was explicit in the 290 // source. Synthetic wrappers, for which Synthetic != "", may share 291 // the same position as the function they wrap. 292 // Syntax.Pos() always returns the position of the declaring "func" token. 293 // 294 // Type() returns the function's Signature. 295 // 296 type Function struct { 297 name string 298 object types.Object // a declared *types.Func or one of its wrappers 299 method *types.Selection // info about provenance of synthetic methods 300 Signature *types.Signature 301 pos token.Pos 302 303 Synthetic string // provenance of synthetic function; "" for true source functions 304 syntax ast.Node // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode 305 parent *Function // enclosing function if anon; nil if global 306 Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error) 307 Prog *Program // enclosing program 308 Params []*Parameter // function parameters; for methods, includes receiver 309 FreeVars []*FreeVar // free variables whose values must be supplied by closure 310 Locals []*Alloc // local variables of this function 311 Blocks []*BasicBlock // basic blocks of the function; nil => external 312 Recover *BasicBlock // optional; control transfers here after recovered panic 313 AnonFuncs []*Function // anonymous functions directly beneath this one 314 referrers []Instruction // referring instructions (iff Parent() != nil) 315 316 // The following fields are set transiently during building, 317 // then cleared. 318 currentBlock *BasicBlock // where to emit code 319 objects map[types.Object]Value // addresses of local variables 320 namedResults []*Alloc // tuple of named results 321 targets *targets // linked stack of branch targets 322 lblocks map[*ast.Object]*lblock // labelled blocks 323 } 324 325 // BasicBlock represents an SSA basic block. 326 // 327 // The final element of Instrs is always an explicit transfer of 328 // control (If, Jump, Return, or Panic). 329 // 330 // A block may contain no Instructions only if it is unreachable, 331 // i.e., Preds is nil. Empty blocks are typically pruned. 332 // 333 // BasicBlocks and their Preds/Succs relation form a (possibly cyclic) 334 // graph independent of the SSA Value graph: the control-flow graph or 335 // CFG. It is illegal for multiple edges to exist between the same 336 // pair of blocks. 337 // 338 // Each BasicBlock is also a node in the dominator tree of the CFG. 339 // The tree may be navigated using Idom()/Dominees() and queried using 340 // Dominates(). 341 // 342 // The order of Preds and Succs is significant (to Phi and If 343 // instructions, respectively). 344 // 345 type BasicBlock struct { 346 Index int // index of this block within Parent().Blocks 347 Comment string // optional label; no semantic significance 348 parent *Function // parent function 349 Instrs []Instruction // instructions in order 350 Preds, Succs []*BasicBlock // predecessors and successors 351 succs2 [2]*BasicBlock // initial space for Succs 352 dom domInfo // dominator tree info 353 gaps int // number of nil Instrs (transient) 354 rundefers int // number of rundefers (transient) 355 } 356 357 // Pure values ---------------------------------------- 358 359 // A FreeVar represents a free variable of the function to which it 360 // belongs. 361 // 362 // FreeVars are used to implement anonymous functions, whose free 363 // variables are lexically captured in a closure formed by 364 // MakeClosure. The value of such a free var is an Alloc or another 365 // FreeVar and is considered a potentially escaping heap address, with 366 // pointer type. 367 // 368 // FreeVars are also used to implement bound method closures. Such a 369 // free var represents the receiver value and may be of any type that 370 // has concrete methods. 371 // 372 // Pos() returns the position of the value that was captured, which 373 // belongs to an enclosing function. 374 // 375 type FreeVar struct { 376 name string 377 typ types.Type 378 pos token.Pos 379 parent *Function 380 referrers []Instruction 381 382 // Transiently needed during building. 383 outer Value // the Value captured from the enclosing context. 384 } 385 386 // A Parameter represents an input parameter of a function. 387 // 388 type Parameter struct { 389 name string 390 object types.Object // a *types.Var; nil for non-source locals 391 typ types.Type 392 pos token.Pos 393 parent *Function 394 referrers []Instruction 395 } 396 397 // A Const represents the value of a constant expression. 398 // 399 // The underlying type of a constant may be any boolean, numeric, or 400 // string type. In addition, a Const may represent the nil value of 401 // any reference type---interface, map, channel, pointer, slice, or 402 // function---but not "untyped nil". 403 // 404 // All source-level constant expressions are represented by a Const 405 // of the same type and value. 406 // 407 // Value holds the value of the constant, independent of its Type(), 408 // using go/constant representation, or nil for a typed nil value. 409 // 410 // Pos() returns token.NoPos. 411 // 412 // Example printed form: 413 // 42:int 414 // "hello":untyped string 415 // 3+4i:MyComplex 416 // 417 type Const struct { 418 typ types.Type 419 Value constant.Value 420 } 421 422 // A Global is a named Value holding the address of a package-level 423 // variable. 424 // 425 // Pos() returns the position of the ast.ValueSpec.Names[*] 426 // identifier. 427 // 428 type Global struct { 429 name string 430 object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard 431 typ types.Type 432 pos token.Pos 433 434 Pkg *Package 435 } 436 437 // A Builtin represents a specific use of a built-in function, e.g. len. 438 // 439 // Builtins are immutable values. Builtins do not have addresses. 440 // Builtins can only appear in CallCommon.Func. 441 // 442 // Name() indicates the function: one of the built-in functions from the 443 // Go spec (excluding "make" and "new") or one of these ssa-defined 444 // intrinsics: 445 // 446 // // wrapnilchk returns ptr if non-nil, panics otherwise. 447 // // (For use in indirection wrappers.) 448 // func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T 449 // 450 // Object() returns a *types.Builtin for built-ins defined by the spec, 451 // nil for others. 452 // 453 // Type() returns a *types.Signature representing the effective 454 // signature of the built-in for this call. 455 // 456 type Builtin struct { 457 name string 458 sig *types.Signature 459 } 460 461 // Value-defining instructions ---------------------------------------- 462 463 // The Alloc instruction reserves space for a variable of the given type, 464 // zero-initializes it, and yields its address. 465 // 466 // Alloc values are always addresses, and have pointer types, so the 467 // type of the allocated variable is actually 468 // Type().Underlying().(*types.Pointer).Elem(). 469 // 470 // If Heap is false, Alloc allocates space in the function's 471 // activation record (frame); we refer to an Alloc(Heap=false) as a 472 // "local" alloc. Each local Alloc returns the same address each time 473 // it is executed within the same activation; the space is 474 // re-initialized to zero. 475 // 476 // If Heap is true, Alloc allocates space in the heap; we 477 // refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc 478 // returns a different address each time it is executed. 479 // 480 // When Alloc is applied to a channel, map or slice type, it returns 481 // the address of an uninitialized (nil) reference of that kind; store 482 // the result of MakeSlice, MakeMap or MakeChan in that location to 483 // instantiate these types. 484 // 485 // Pos() returns the ast.CompositeLit.Lbrace for a composite literal, 486 // or the ast.CallExpr.Rparen for a call to new() or for a call that 487 // allocates a varargs slice. 488 // 489 // Example printed form: 490 // t0 = local int 491 // t1 = new int 492 // 493 type Alloc struct { 494 register 495 Comment string 496 Heap bool 497 index int // dense numbering; for lifting 498 } 499 500 // The Phi instruction represents an SSA φ-node, which combines values 501 // that differ across incoming control-flow edges and yields a new 502 // value. Within a block, all φ-nodes must appear before all non-φ 503 // nodes. 504 // 505 // Pos() returns the position of the && or || for short-circuit 506 // control-flow joins, or that of the *Alloc for φ-nodes inserted 507 // during SSA renaming. 508 // 509 // Example printed form: 510 // t2 = phi [0: t0, 1: t1] 511 // 512 type Phi struct { 513 register 514 Comment string // a hint as to its purpose 515 Edges []Value // Edges[i] is value for Block().Preds[i] 516 } 517 518 // The Call instruction represents a function or method call. 519 // 520 // The Call instruction yields the function result if there is exactly 521 // one. Otherwise it returns a tuple, the components of which are 522 // accessed via Extract. 523 // 524 // See CallCommon for generic function call documentation. 525 // 526 // Pos() returns the ast.CallExpr.Lparen, if explicit in the source. 527 // 528 // Example printed form: 529 // t2 = println(t0, t1) 530 // t4 = t3() 531 // t7 = invoke t5.Println(...t6) 532 // 533 type Call struct { 534 register 535 Call CallCommon 536 } 537 538 // The BinOp instruction yields the result of binary operation X Op Y. 539 // 540 // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source. 541 // 542 // Example printed form: 543 // t1 = t0 + 1:int 544 // 545 type BinOp struct { 546 register 547 // One of: 548 // ADD SUB MUL QUO REM + - * / % 549 // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^ 550 // EQL NEQ LSS LEQ GTR GEQ == != < <= < >= 551 Op token.Token 552 X, Y Value 553 } 554 555 // The UnOp instruction yields the result of Op X. 556 // ARROW is channel receive. 557 // MUL is pointer indirection (load). 558 // XOR is bitwise complement. 559 // SUB is negation. 560 // NOT is logical negation. 561 // 562 // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above 563 // and a boolean indicating the success of the receive. The 564 // components of the tuple are accessed using Extract. 565 // 566 // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source. 567 // For receive operations (ARROW) implicit in ranging over a channel, 568 // Pos() returns the ast.RangeStmt.For. 569 // For implicit memory loads (STAR), Pos() returns the position of the 570 // most closely associated source-level construct; the details are not 571 // specified. 572 // 573 // Example printed form: 574 // t0 = *x 575 // t2 = <-t1,ok 576 // 577 type UnOp struct { 578 register 579 Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^ 580 X Value 581 CommaOk bool 582 } 583 584 // The ChangeType instruction applies to X a value-preserving type 585 // change to Type(). 586 // 587 // Type changes are permitted: 588 // - between a named type and its underlying type. 589 // - between two named types of the same underlying type. 590 // - between (possibly named) pointers to identical base types. 591 // - from a bidirectional channel to a read- or write-channel, 592 // optionally adding/removing a name. 593 // 594 // This operation cannot fail dynamically. 595 // 596 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 597 // from an explicit conversion in the source. 598 // 599 // Example printed form: 600 // t1 = changetype *int <- IntPtr (t0) 601 // 602 type ChangeType struct { 603 register 604 X Value 605 } 606 607 // The Convert instruction yields the conversion of value X to type 608 // Type(). One or both of those types is basic (but possibly named). 609 // 610 // A conversion may change the value and representation of its operand. 611 // Conversions are permitted: 612 // - between real numeric types. 613 // - between complex numeric types. 614 // - between string and []byte or []rune. 615 // - between pointers and unsafe.Pointer. 616 // - between unsafe.Pointer and uintptr. 617 // - from (Unicode) integer to (UTF-8) string. 618 // A conversion may imply a type name change also. 619 // 620 // This operation cannot fail dynamically. 621 // 622 // Conversions of untyped string/number/bool constants to a specific 623 // representation are eliminated during SSA construction. 624 // 625 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 626 // from an explicit conversion in the source. 627 // 628 // Example printed form: 629 // t1 = convert []byte <- string (t0) 630 // 631 type Convert struct { 632 register 633 X Value 634 } 635 636 // ChangeInterface constructs a value of one interface type from a 637 // value of another interface type known to be assignable to it. 638 // This operation cannot fail. 639 // 640 // Pos() returns the ast.CallExpr.Lparen if the instruction arose from 641 // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the 642 // instruction arose from an explicit e.(T) operation; or token.NoPos 643 // otherwise. 644 // 645 // Example printed form: 646 // t1 = change interface interface{} <- I (t0) 647 // 648 type ChangeInterface struct { 649 register 650 X Value 651 } 652 653 // MakeInterface constructs an instance of an interface type from a 654 // value of a concrete type. 655 // 656 // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set 657 // of X, and Program.MethodValue(m) to find the implementation of a method. 658 // 659 // To construct the zero value of an interface type T, use: 660 // NewConst(constant.MakeNil(), T, pos) 661 // 662 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 663 // from an explicit conversion in the source. 664 // 665 // Example printed form: 666 // t1 = make interface{} <- int (42:int) 667 // t2 = make Stringer <- t0 668 // 669 type MakeInterface struct { 670 register 671 X Value 672 } 673 674 // The MakeClosure instruction yields a closure value whose code is 675 // Fn and whose free variables' values are supplied by Bindings. 676 // 677 // Type() returns a (possibly named) *types.Signature. 678 // 679 // Pos() returns the ast.FuncLit.Type.Func for a function literal 680 // closure or the ast.SelectorExpr.Sel for a bound method closure. 681 // 682 // Example printed form: 683 // t0 = make closure anon@1.2 [x y z] 684 // t1 = make closure bound$(main.I).add [i] 685 // 686 type MakeClosure struct { 687 register 688 Fn Value // always a *Function 689 Bindings []Value // values for each free variable in Fn.FreeVars 690 } 691 692 // The MakeMap instruction creates a new hash-table-based map object 693 // and yields a value of kind map. 694 // 695 // Type() returns a (possibly named) *types.Map. 696 // 697 // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or 698 // the ast.CompositeLit.Lbrack if created by a literal. 699 // 700 // Example printed form: 701 // t1 = make map[string]int t0 702 // t1 = make StringIntMap t0 703 // 704 type MakeMap struct { 705 register 706 Reserve Value // initial space reservation; nil => default 707 } 708 709 // The MakeChan instruction creates a new channel object and yields a 710 // value of kind chan. 711 // 712 // Type() returns a (possibly named) *types.Chan. 713 // 714 // Pos() returns the ast.CallExpr.Lparen for the make(chan) that 715 // created it. 716 // 717 // Example printed form: 718 // t0 = make chan int 0 719 // t0 = make IntChan 0 720 // 721 type MakeChan struct { 722 register 723 Size Value // int; size of buffer; zero => synchronous. 724 } 725 726 // The MakeSlice instruction yields a slice of length Len backed by a 727 // newly allocated array of length Cap. 728 // 729 // Both Len and Cap must be non-nil Values of integer type. 730 // 731 // (Alloc(types.Array) followed by Slice will not suffice because 732 // Alloc can only create arrays of constant length.) 733 // 734 // Type() returns a (possibly named) *types.Slice. 735 // 736 // Pos() returns the ast.CallExpr.Lparen for the make([]T) that 737 // created it. 738 // 739 // Example printed form: 740 // t1 = make []string 1:int t0 741 // t1 = make StringSlice 1:int t0 742 // 743 type MakeSlice struct { 744 register 745 Len Value 746 Cap Value 747 } 748 749 // The Slice instruction yields a slice of an existing string, slice 750 // or *array X between optional integer bounds Low and High. 751 // 752 // Dynamically, this instruction panics if X evaluates to a nil *array 753 // pointer. 754 // 755 // Type() returns string if the type of X was string, otherwise a 756 // *types.Slice with the same element type as X. 757 // 758 // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice 759 // operation, the ast.CompositeLit.Lbrace if created by a literal, or 760 // NoPos if not explicit in the source (e.g. a variadic argument slice). 761 // 762 // Example printed form: 763 // t1 = slice t0[1:] 764 // 765 type Slice struct { 766 register 767 X Value // slice, string, or *array 768 Low, High, Max Value // each may be nil 769 } 770 771 // The FieldAddr instruction yields the address of Field of *struct X. 772 // 773 // The field is identified by its index within the field list of the 774 // struct type of X. 775 // 776 // Dynamically, this instruction panics if X evaluates to a nil 777 // pointer. 778 // 779 // Type() returns a (possibly named) *types.Pointer. 780 // 781 // Pos() returns the position of the ast.SelectorExpr.Sel for the 782 // field, if explicit in the source. 783 // 784 // Example printed form: 785 // t1 = &t0.name [#1] 786 // 787 type FieldAddr struct { 788 register 789 X Value // *struct 790 Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field) 791 } 792 793 // The Field instruction yields the Field of struct X. 794 // 795 // The field is identified by its index within the field list of the 796 // struct type of X; by using numeric indices we avoid ambiguity of 797 // package-local identifiers and permit compact representations. 798 // 799 // Pos() returns the position of the ast.SelectorExpr.Sel for the 800 // field, if explicit in the source. 801 // 802 // Example printed form: 803 // t1 = t0.name [#1] 804 // 805 type Field struct { 806 register 807 X Value // struct 808 Field int // index into X.Type().(*types.Struct).Fields 809 } 810 811 // The IndexAddr instruction yields the address of the element at 812 // index Index of collection X. Index is an integer expression. 813 // 814 // The elements of maps and strings are not addressable; use Lookup or 815 // MapUpdate instead. 816 // 817 // Dynamically, this instruction panics if X evaluates to a nil *array 818 // pointer. 819 // 820 // Type() returns a (possibly named) *types.Pointer. 821 // 822 // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if 823 // explicit in the source. 824 // 825 // Example printed form: 826 // t2 = &t0[t1] 827 // 828 type IndexAddr struct { 829 register 830 X Value // slice or *array, 831 Index Value // numeric index 832 } 833 834 // The Index instruction yields element Index of array X. 835 // 836 // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if 837 // explicit in the source. 838 // 839 // Example printed form: 840 // t2 = t0[t1] 841 // 842 type Index struct { 843 register 844 X Value // array 845 Index Value // integer index 846 } 847 848 // The Lookup instruction yields element Index of collection X, a map 849 // or string. Index is an integer expression if X is a string or the 850 // appropriate key type if X is a map. 851 // 852 // If CommaOk, the result is a 2-tuple of the value above and a 853 // boolean indicating the result of a map membership test for the key. 854 // The components of the tuple are accessed using Extract. 855 // 856 // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source. 857 // 858 // Example printed form: 859 // t2 = t0[t1] 860 // t5 = t3[t4],ok 861 // 862 type Lookup struct { 863 register 864 X Value // string or map 865 Index Value // numeric or key-typed index 866 CommaOk bool // return a value,ok pair 867 } 868 869 // SelectState is a helper for Select. 870 // It represents one goal state and its corresponding communication. 871 // 872 type SelectState struct { 873 Dir types.ChanDir // direction of case (SendOnly or RecvOnly) 874 Chan Value // channel to use (for send or receive) 875 Send Value // value to send (for send) 876 Pos token.Pos // position of token.ARROW 877 DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode] 878 } 879 880 // The Select instruction tests whether (or blocks until) one 881 // of the specified sent or received states is entered. 882 // 883 // Let n be the number of States for which Dir==RECV and T_i (0<=i<n) 884 // be the element type of each such state's Chan. 885 // Select returns an n+2-tuple 886 // (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1) 887 // The tuple's components, described below, must be accessed via the 888 // Extract instruction. 889 // 890 // If Blocking, select waits until exactly one state holds, i.e. a 891 // channel becomes ready for the designated operation of sending or 892 // receiving; select chooses one among the ready states 893 // pseudorandomly, performs the send or receive operation, and sets 894 // 'index' to the index of the chosen channel. 895 // 896 // If !Blocking, select doesn't block if no states hold; instead it 897 // returns immediately with index equal to -1. 898 // 899 // If the chosen channel was used for a receive, the r_i component is 900 // set to the received value, where i is the index of that state among 901 // all n receive states; otherwise r_i has the zero value of type T_i. 902 // Note that the receive index i is not the same as the state 903 // index index. 904 // 905 // The second component of the triple, recvOk, is a boolean whose value 906 // is true iff the selected operation was a receive and the receive 907 // successfully yielded a value. 908 // 909 // Pos() returns the ast.SelectStmt.Select. 910 // 911 // Example printed form: 912 // t3 = select nonblocking [<-t0, t1<-t2] 913 // t4 = select blocking [] 914 // 915 type Select struct { 916 register 917 States []*SelectState 918 Blocking bool 919 } 920 921 // The Range instruction yields an iterator over the domain and range 922 // of X, which must be a string or map. 923 // 924 // Elements are accessed via Next. 925 // 926 // Type() returns an opaque and degenerate "rangeIter" type. 927 // 928 // Pos() returns the ast.RangeStmt.For. 929 // 930 // Example printed form: 931 // t0 = range "hello":string 932 // 933 type Range struct { 934 register 935 X Value // string or map 936 } 937 938 // The Next instruction reads and advances the (map or string) 939 // iterator Iter and returns a 3-tuple value (ok, k, v). If the 940 // iterator is not exhausted, ok is true and k and v are the next 941 // elements of the domain and range, respectively. Otherwise ok is 942 // false and k and v are undefined. 943 // 944 // Components of the tuple are accessed using Extract. 945 // 946 // The IsString field distinguishes iterators over strings from those 947 // over maps, as the Type() alone is insufficient: consider 948 // map[int]rune. 949 // 950 // Type() returns a *types.Tuple for the triple (ok, k, v). 951 // The types of k and/or v may be types.Invalid. 952 // 953 // Example printed form: 954 // t1 = next t0 955 // 956 type Next struct { 957 register 958 Iter Value 959 IsString bool // true => string iterator; false => map iterator. 960 } 961 962 // The TypeAssert instruction tests whether interface value X has type 963 // AssertedType. 964 // 965 // If !CommaOk, on success it returns v, the result of the conversion 966 // (defined below); on failure it panics. 967 // 968 // If CommaOk: on success it returns a pair (v, true) where v is the 969 // result of the conversion; on failure it returns (z, false) where z 970 // is AssertedType's zero value. The components of the pair must be 971 // accessed using the Extract instruction. 972 // 973 // If AssertedType is a concrete type, TypeAssert checks whether the 974 // dynamic type in interface X is equal to it, and if so, the result 975 // of the conversion is a copy of the value in the interface. 976 // 977 // If AssertedType is an interface, TypeAssert checks whether the 978 // dynamic type of the interface is assignable to it, and if so, the 979 // result of the conversion is a copy of the interface value X. 980 // If AssertedType is a superinterface of X.Type(), the operation will 981 // fail iff the operand is nil. (Contrast with ChangeInterface, which 982 // performs no nil-check.) 983 // 984 // Type() reflects the actual type of the result, possibly a 985 // 2-types.Tuple; AssertedType is the asserted type. 986 // 987 // Pos() returns the ast.CallExpr.Lparen if the instruction arose from 988 // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the 989 // instruction arose from an explicit e.(T) operation; or the 990 // ast.CaseClause.Case if the instruction arose from a case of a 991 // type-switch statement. 992 // 993 // Example printed form: 994 // t1 = typeassert t0.(int) 995 // t3 = typeassert,ok t2.(T) 996 // 997 type TypeAssert struct { 998 register 999 X Value 1000 AssertedType types.Type 1001 CommaOk bool 1002 } 1003 1004 // The Extract instruction yields component Index of Tuple. 1005 // 1006 // This is used to access the results of instructions with multiple 1007 // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and 1008 // IndexExpr(Map). 1009 // 1010 // Example printed form: 1011 // t1 = extract t0 #1 1012 // 1013 type Extract struct { 1014 register 1015 Tuple Value 1016 Index int 1017 } 1018 1019 // Instructions executed for effect. They do not yield a value. -------------------- 1020 1021 // The Jump instruction transfers control to the sole successor of its 1022 // owning block. 1023 // 1024 // A Jump must be the last instruction of its containing BasicBlock. 1025 // 1026 // Pos() returns NoPos. 1027 // 1028 // Example printed form: 1029 // jump done 1030 // 1031 type Jump struct { 1032 anInstruction 1033 } 1034 1035 // The If instruction transfers control to one of the two successors 1036 // of its owning block, depending on the boolean Cond: the first if 1037 // true, the second if false. 1038 // 1039 // An If instruction must be the last instruction of its containing 1040 // BasicBlock. 1041 // 1042 // Pos() returns NoPos. 1043 // 1044 // Example printed form: 1045 // if t0 goto done else body 1046 // 1047 type If struct { 1048 anInstruction 1049 Cond Value 1050 } 1051 1052 // The Return instruction returns values and control back to the calling 1053 // function. 1054 // 1055 // len(Results) is always equal to the number of results in the 1056 // function's signature. 1057 // 1058 // If len(Results) > 1, Return returns a tuple value with the specified 1059 // components which the caller must access using Extract instructions. 1060 // 1061 // There is no instruction to return a ready-made tuple like those 1062 // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or 1063 // a tail-call to a function with multiple result parameters. 1064 // 1065 // Return must be the last instruction of its containing BasicBlock. 1066 // Such a block has no successors. 1067 // 1068 // Pos() returns the ast.ReturnStmt.Return, if explicit in the source. 1069 // 1070 // Example printed form: 1071 // return 1072 // return nil:I, 2:int 1073 // 1074 type Return struct { 1075 anInstruction 1076 Results []Value 1077 pos token.Pos 1078 } 1079 1080 // The RunDefers instruction pops and invokes the entire stack of 1081 // procedure calls pushed by Defer instructions in this function. 1082 // 1083 // It is legal to encounter multiple 'rundefers' instructions in a 1084 // single control-flow path through a function; this is useful in 1085 // the combined init() function, for example. 1086 // 1087 // Pos() returns NoPos. 1088 // 1089 // Example printed form: 1090 // rundefers 1091 // 1092 type RunDefers struct { 1093 anInstruction 1094 } 1095 1096 // The Panic instruction initiates a panic with value X. 1097 // 1098 // A Panic instruction must be the last instruction of its containing 1099 // BasicBlock, which must have no successors. 1100 // 1101 // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction; 1102 // they are treated as calls to a built-in function. 1103 // 1104 // Pos() returns the ast.CallExpr.Lparen if this panic was explicit 1105 // in the source. 1106 // 1107 // Example printed form: 1108 // panic t0 1109 // 1110 type Panic struct { 1111 anInstruction 1112 X Value // an interface{} 1113 pos token.Pos 1114 } 1115 1116 // The Go instruction creates a new goroutine and calls the specified 1117 // function within it. 1118 // 1119 // See CallCommon for generic function call documentation. 1120 // 1121 // Pos() returns the ast.GoStmt.Go. 1122 // 1123 // Example printed form: 1124 // go println(t0, t1) 1125 // go t3() 1126 // go invoke t5.Println(...t6) 1127 // 1128 type Go struct { 1129 anInstruction 1130 Call CallCommon 1131 pos token.Pos 1132 } 1133 1134 // The Defer instruction pushes the specified call onto a stack of 1135 // functions to be called by a RunDefers instruction or by a panic. 1136 // 1137 // See CallCommon for generic function call documentation. 1138 // 1139 // Pos() returns the ast.DeferStmt.Defer. 1140 // 1141 // Example printed form: 1142 // defer println(t0, t1) 1143 // defer t3() 1144 // defer invoke t5.Println(...t6) 1145 // 1146 type Defer struct { 1147 anInstruction 1148 Call CallCommon 1149 pos token.Pos 1150 } 1151 1152 // The Send instruction sends X on channel Chan. 1153 // 1154 // Pos() returns the ast.SendStmt.Arrow, if explicit in the source. 1155 // 1156 // Example printed form: 1157 // send t0 <- t1 1158 // 1159 type Send struct { 1160 anInstruction 1161 Chan, X Value 1162 pos token.Pos 1163 } 1164 1165 // The Store instruction stores Val at address Addr. 1166 // Stores can be of arbitrary types. 1167 // 1168 // Pos() returns the position of the source-level construct most closely 1169 // associated with the memory store operation. 1170 // Since implicit memory stores are numerous and varied and depend upon 1171 // implementation choices, the details are not specified. 1172 // 1173 // Example printed form: 1174 // *x = y 1175 // 1176 type Store struct { 1177 anInstruction 1178 Addr Value 1179 Val Value 1180 pos token.Pos 1181 } 1182 1183 // The MapUpdate instruction updates the association of Map[Key] to 1184 // Value. 1185 // 1186 // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack, 1187 // if explicit in the source. 1188 // 1189 // Example printed form: 1190 // t0[t1] = t2 1191 // 1192 type MapUpdate struct { 1193 anInstruction 1194 Map Value 1195 Key Value 1196 Value Value 1197 pos token.Pos 1198 } 1199 1200 // A DebugRef instruction maps a source-level expression Expr to the 1201 // SSA value X that represents the value (!IsAddr) or address (IsAddr) 1202 // of that expression. 1203 // 1204 // DebugRef is a pseudo-instruction: it has no dynamic effect. 1205 // 1206 // Pos() returns Expr.Pos(), the start position of the source-level 1207 // expression. This is not the same as the "designated" token as 1208 // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the 1209 // position of the ("designated") Lparen token. 1210 // 1211 // If Expr is an *ast.Ident denoting a var or func, Object() returns 1212 // the object; though this information can be obtained from the type 1213 // checker, including it here greatly facilitates debugging. 1214 // For non-Ident expressions, Object() returns nil. 1215 // 1216 // DebugRefs are generated only for functions built with debugging 1217 // enabled; see Package.SetDebugMode() and the GlobalDebug builder 1218 // mode flag. 1219 // 1220 // DebugRefs are not emitted for ast.Idents referring to constants or 1221 // predeclared identifiers, since they are trivial and numerous. 1222 // Nor are they emitted for ast.ParenExprs. 1223 // 1224 // (By representing these as instructions, rather than out-of-band, 1225 // consistency is maintained during transformation passes by the 1226 // ordinary SSA renaming machinery.) 1227 // 1228 // Example printed form: 1229 // ; *ast.CallExpr @ 102:9 is t5 1230 // ; var x float64 @ 109:72 is x 1231 // ; address of *ast.CompositeLit @ 216:10 is t0 1232 // 1233 type DebugRef struct { 1234 anInstruction 1235 Expr ast.Expr // the referring expression (never *ast.ParenExpr) 1236 object types.Object // the identity of the source var/func 1237 IsAddr bool // Expr is addressable and X is the address it denotes 1238 X Value // the value or address of Expr 1239 } 1240 1241 // Embeddable mix-ins and helpers for common parts of other structs. ----------- 1242 1243 // register is a mix-in embedded by all SSA values that are also 1244 // instructions, i.e. virtual registers, and provides a uniform 1245 // implementation of most of the Value interface: Value.Name() is a 1246 // numbered register (e.g. "t0"); the other methods are field accessors. 1247 // 1248 // Temporary names are automatically assigned to each register on 1249 // completion of building a function in SSA form. 1250 // 1251 // Clients must not assume that the 'id' value (and the Name() derived 1252 // from it) is unique within a function. As always in this API, 1253 // semantics are determined only by identity; names exist only to 1254 // facilitate debugging. 1255 // 1256 type register struct { 1257 anInstruction 1258 num int // "name" of virtual register, e.g. "t0". Not guaranteed unique. 1259 typ types.Type // type of virtual register 1260 pos token.Pos // position of source expression, or NoPos 1261 referrers []Instruction 1262 } 1263 1264 // anInstruction is a mix-in embedded by all Instructions. 1265 // It provides the implementations of the Block and setBlock methods. 1266 type anInstruction struct { 1267 block *BasicBlock // the basic block of this instruction 1268 } 1269 1270 // CallCommon is contained by Go, Defer and Call to hold the 1271 // common parts of a function or method call. 1272 // 1273 // Each CallCommon exists in one of two modes, function call and 1274 // interface method invocation, or "call" and "invoke" for short. 1275 // 1276 // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon 1277 // represents an ordinary function call of the value in Value, 1278 // which may be a *Builtin, a *Function or any other value of kind 1279 // 'func'. 1280 // 1281 // Value may be one of: 1282 // (a) a *Function, indicating a statically dispatched call 1283 // to a package-level function, an anonymous function, or 1284 // a method of a named type. 1285 // (b) a *MakeClosure, indicating an immediately applied 1286 // function literal with free variables. 1287 // (c) a *Builtin, indicating a statically dispatched call 1288 // to a built-in function. 1289 // (d) any other value, indicating a dynamically dispatched 1290 // function call. 1291 // StaticCallee returns the identity of the callee in cases 1292 // (a) and (b), nil otherwise. 1293 // 1294 // Args contains the arguments to the call. If Value is a method, 1295 // Args[0] contains the receiver parameter. 1296 // 1297 // Example printed form: 1298 // t2 = println(t0, t1) 1299 // go t3() 1300 // defer t5(...t6) 1301 // 1302 // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon 1303 // represents a dynamically dispatched call to an interface method. 1304 // In this mode, Value is the interface value and Method is the 1305 // interface's abstract method. Note: an abstract method may be 1306 // shared by multiple interfaces due to embedding; Value.Type() 1307 // provides the specific interface used for this call. 1308 // 1309 // Value is implicitly supplied to the concrete method implementation 1310 // as the receiver parameter; in other words, Args[0] holds not the 1311 // receiver but the first true argument. 1312 // 1313 // Example printed form: 1314 // t1 = invoke t0.String() 1315 // go invoke t3.Run(t2) 1316 // defer invoke t4.Handle(...t5) 1317 // 1318 // For all calls to variadic functions (Signature().Variadic()), 1319 // the last element of Args is a slice. 1320 // 1321 type CallCommon struct { 1322 Value Value // receiver (invoke mode) or func value (call mode) 1323 Method *types.Func // abstract method (invoke mode) 1324 Args []Value // actual parameters (in static method call, includes receiver) 1325 pos token.Pos // position of CallExpr.Lparen, iff explicit in source 1326 } 1327 1328 // IsInvoke returns true if this call has "invoke" (not "call") mode. 1329 func (c *CallCommon) IsInvoke() bool { 1330 return c.Method != nil 1331 } 1332 1333 func (c *CallCommon) Pos() token.Pos { return c.pos } 1334 1335 // Signature returns the signature of the called function. 1336 // 1337 // For an "invoke"-mode call, the signature of the interface method is 1338 // returned. 1339 // 1340 // In either "call" or "invoke" mode, if the callee is a method, its 1341 // receiver is represented by sig.Recv, not sig.Params().At(0). 1342 // 1343 func (c *CallCommon) Signature() *types.Signature { 1344 if c.Method != nil { 1345 return c.Method.Type().(*types.Signature) 1346 } 1347 return c.Value.Type().Underlying().(*types.Signature) 1348 } 1349 1350 // StaticCallee returns the callee if this is a trivially static 1351 // "call"-mode call to a function. 1352 func (c *CallCommon) StaticCallee() *Function { 1353 switch fn := c.Value.(type) { 1354 case *Function: 1355 return fn 1356 case *MakeClosure: 1357 return fn.Fn.(*Function) 1358 } 1359 return nil 1360 } 1361 1362 // Description returns a description of the mode of this call suitable 1363 // for a user interface, e.g., "static method call". 1364 func (c *CallCommon) Description() string { 1365 switch fn := c.Value.(type) { 1366 case *Builtin: 1367 return "built-in function call" 1368 case *MakeClosure: 1369 return "static function closure call" 1370 case *Function: 1371 if fn.Signature.Recv() != nil { 1372 return "static method call" 1373 } 1374 return "static function call" 1375 } 1376 if c.IsInvoke() { 1377 return "dynamic method call" // ("invoke" mode) 1378 } 1379 return "dynamic function call" 1380 } 1381 1382 // The CallInstruction interface, implemented by *Go, *Defer and *Call, 1383 // exposes the common parts of function-calling instructions, 1384 // yet provides a way back to the Value defined by *Call alone. 1385 // 1386 type CallInstruction interface { 1387 Instruction 1388 Common() *CallCommon // returns the common parts of the call 1389 Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer) 1390 } 1391 1392 func (s *Call) Common() *CallCommon { return &s.Call } 1393 func (s *Defer) Common() *CallCommon { return &s.Call } 1394 func (s *Go) Common() *CallCommon { return &s.Call } 1395 1396 func (s *Call) Value() *Call { return s } 1397 func (s *Defer) Value() *Call { return nil } 1398 func (s *Go) Value() *Call { return nil } 1399 1400 func (v *Builtin) Type() types.Type { return v.sig } 1401 func (v *Builtin) Name() string { return v.name } 1402 func (*Builtin) Referrers() *[]Instruction { return nil } 1403 func (v *Builtin) Pos() token.Pos { return token.NoPos } 1404 func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) } 1405 func (v *Builtin) Parent() *Function { return nil } 1406 1407 func (v *FreeVar) Type() types.Type { return v.typ } 1408 func (v *FreeVar) Name() string { return v.name } 1409 func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers } 1410 func (v *FreeVar) Pos() token.Pos { return v.pos } 1411 func (v *FreeVar) Parent() *Function { return v.parent } 1412 1413 func (v *Global) Type() types.Type { return v.typ } 1414 func (v *Global) Name() string { return v.name } 1415 func (v *Global) Parent() *Function { return nil } 1416 func (v *Global) Pos() token.Pos { return v.pos } 1417 func (v *Global) Referrers() *[]Instruction { return nil } 1418 func (v *Global) Token() token.Token { return token.VAR } 1419 func (v *Global) Object() types.Object { return v.object } 1420 func (v *Global) String() string { return v.RelString(nil) } 1421 func (v *Global) Package() *Package { return v.Pkg } 1422 func (v *Global) RelString(from *types.Package) string { return relString(v, from) } 1423 1424 func (v *Function) Name() string { return v.name } 1425 func (v *Function) Type() types.Type { return v.Signature } 1426 func (v *Function) Pos() token.Pos { return v.pos } 1427 func (v *Function) Token() token.Token { return token.FUNC } 1428 func (v *Function) Object() types.Object { return v.object } 1429 func (v *Function) String() string { return v.RelString(nil) } 1430 func (v *Function) Package() *Package { return v.Pkg } 1431 func (v *Function) Parent() *Function { return v.parent } 1432 func (v *Function) Referrers() *[]Instruction { 1433 if v.parent != nil { 1434 return &v.referrers 1435 } 1436 return nil 1437 } 1438 1439 func (v *Parameter) Type() types.Type { return v.typ } 1440 func (v *Parameter) Name() string { return v.name } 1441 func (v *Parameter) Object() types.Object { return v.object } 1442 func (v *Parameter) Referrers() *[]Instruction { return &v.referrers } 1443 func (v *Parameter) Pos() token.Pos { return v.pos } 1444 func (v *Parameter) Parent() *Function { return v.parent } 1445 1446 func (v *Alloc) Type() types.Type { return v.typ } 1447 func (v *Alloc) Referrers() *[]Instruction { return &v.referrers } 1448 func (v *Alloc) Pos() token.Pos { return v.pos } 1449 1450 func (v *register) Type() types.Type { return v.typ } 1451 func (v *register) setType(typ types.Type) { v.typ = typ } 1452 func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) } 1453 func (v *register) setNum(num int) { v.num = num } 1454 func (v *register) Referrers() *[]Instruction { return &v.referrers } 1455 func (v *register) Pos() token.Pos { return v.pos } 1456 func (v *register) setPos(pos token.Pos) { v.pos = pos } 1457 1458 func (v *anInstruction) Parent() *Function { return v.block.parent } 1459 func (v *anInstruction) Block() *BasicBlock { return v.block } 1460 func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block } 1461 func (v *anInstruction) Referrers() *[]Instruction { return nil } 1462 1463 func (t *Type) Name() string { return t.object.Name() } 1464 func (t *Type) Pos() token.Pos { return t.object.Pos() } 1465 func (t *Type) Type() types.Type { return t.object.Type() } 1466 func (t *Type) Token() token.Token { return token.TYPE } 1467 func (t *Type) Object() types.Object { return t.object } 1468 func (t *Type) String() string { return t.RelString(nil) } 1469 func (t *Type) Package() *Package { return t.pkg } 1470 func (t *Type) RelString(from *types.Package) string { return relString(t, from) } 1471 1472 func (c *NamedConst) Name() string { return c.object.Name() } 1473 func (c *NamedConst) Pos() token.Pos { return c.object.Pos() } 1474 func (c *NamedConst) String() string { return c.RelString(nil) } 1475 func (c *NamedConst) Type() types.Type { return c.object.Type() } 1476 func (c *NamedConst) Token() token.Token { return token.CONST } 1477 func (c *NamedConst) Object() types.Object { return c.object } 1478 func (c *NamedConst) Package() *Package { return c.pkg } 1479 func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) } 1480 1481 func (d *DebugRef) Object() types.Object { return d.object } 1482 1483 // Func returns the package-level function of the specified name, 1484 // or nil if not found. 1485 // 1486 func (p *Package) Func(name string) (f *Function) { 1487 f, _ = p.Members[name].(*Function) 1488 return 1489 } 1490 1491 // Var returns the package-level variable of the specified name, 1492 // or nil if not found. 1493 // 1494 func (p *Package) Var(name string) (g *Global) { 1495 g, _ = p.Members[name].(*Global) 1496 return 1497 } 1498 1499 // Const returns the package-level constant of the specified name, 1500 // or nil if not found. 1501 // 1502 func (p *Package) Const(name string) (c *NamedConst) { 1503 c, _ = p.Members[name].(*NamedConst) 1504 return 1505 } 1506 1507 // Type returns the package-level type of the specified name, 1508 // or nil if not found. 1509 // 1510 func (p *Package) Type(name string) (t *Type) { 1511 t, _ = p.Members[name].(*Type) 1512 return 1513 } 1514 1515 func (v *Call) Pos() token.Pos { return v.Call.pos } 1516 func (s *Defer) Pos() token.Pos { return s.pos } 1517 func (s *Go) Pos() token.Pos { return s.pos } 1518 func (s *MapUpdate) Pos() token.Pos { return s.pos } 1519 func (s *Panic) Pos() token.Pos { return s.pos } 1520 func (s *Return) Pos() token.Pos { return s.pos } 1521 func (s *Send) Pos() token.Pos { return s.pos } 1522 func (s *Store) Pos() token.Pos { return s.pos } 1523 func (s *If) Pos() token.Pos { return token.NoPos } 1524 func (s *Jump) Pos() token.Pos { return token.NoPos } 1525 func (s *RunDefers) Pos() token.Pos { return token.NoPos } 1526 func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() } 1527 1528 // Operands. 1529 1530 func (v *Alloc) Operands(rands []*Value) []*Value { 1531 return rands 1532 } 1533 1534 func (v *BinOp) Operands(rands []*Value) []*Value { 1535 return append(rands, &v.X, &v.Y) 1536 } 1537 1538 func (c *CallCommon) Operands(rands []*Value) []*Value { 1539 rands = append(rands, &c.Value) 1540 for i := range c.Args { 1541 rands = append(rands, &c.Args[i]) 1542 } 1543 return rands 1544 } 1545 1546 func (s *Go) Operands(rands []*Value) []*Value { 1547 return s.Call.Operands(rands) 1548 } 1549 1550 func (s *Call) Operands(rands []*Value) []*Value { 1551 return s.Call.Operands(rands) 1552 } 1553 1554 func (s *Defer) Operands(rands []*Value) []*Value { 1555 return s.Call.Operands(rands) 1556 } 1557 1558 func (v *ChangeInterface) Operands(rands []*Value) []*Value { 1559 return append(rands, &v.X) 1560 } 1561 1562 func (v *ChangeType) Operands(rands []*Value) []*Value { 1563 return append(rands, &v.X) 1564 } 1565 1566 func (v *Convert) Operands(rands []*Value) []*Value { 1567 return append(rands, &v.X) 1568 } 1569 1570 func (s *DebugRef) Operands(rands []*Value) []*Value { 1571 return append(rands, &s.X) 1572 } 1573 1574 func (v *Extract) Operands(rands []*Value) []*Value { 1575 return append(rands, &v.Tuple) 1576 } 1577 1578 func (v *Field) Operands(rands []*Value) []*Value { 1579 return append(rands, &v.X) 1580 } 1581 1582 func (v *FieldAddr) Operands(rands []*Value) []*Value { 1583 return append(rands, &v.X) 1584 } 1585 1586 func (s *If) Operands(rands []*Value) []*Value { 1587 return append(rands, &s.Cond) 1588 } 1589 1590 func (v *Index) Operands(rands []*Value) []*Value { 1591 return append(rands, &v.X, &v.Index) 1592 } 1593 1594 func (v *IndexAddr) Operands(rands []*Value) []*Value { 1595 return append(rands, &v.X, &v.Index) 1596 } 1597 1598 func (*Jump) Operands(rands []*Value) []*Value { 1599 return rands 1600 } 1601 1602 func (v *Lookup) Operands(rands []*Value) []*Value { 1603 return append(rands, &v.X, &v.Index) 1604 } 1605 1606 func (v *MakeChan) Operands(rands []*Value) []*Value { 1607 return append(rands, &v.Size) 1608 } 1609 1610 func (v *MakeClosure) Operands(rands []*Value) []*Value { 1611 rands = append(rands, &v.Fn) 1612 for i := range v.Bindings { 1613 rands = append(rands, &v.Bindings[i]) 1614 } 1615 return rands 1616 } 1617 1618 func (v *MakeInterface) Operands(rands []*Value) []*Value { 1619 return append(rands, &v.X) 1620 } 1621 1622 func (v *MakeMap) Operands(rands []*Value) []*Value { 1623 return append(rands, &v.Reserve) 1624 } 1625 1626 func (v *MakeSlice) Operands(rands []*Value) []*Value { 1627 return append(rands, &v.Len, &v.Cap) 1628 } 1629 1630 func (v *MapUpdate) Operands(rands []*Value) []*Value { 1631 return append(rands, &v.Map, &v.Key, &v.Value) 1632 } 1633 1634 func (v *Next) Operands(rands []*Value) []*Value { 1635 return append(rands, &v.Iter) 1636 } 1637 1638 func (s *Panic) Operands(rands []*Value) []*Value { 1639 return append(rands, &s.X) 1640 } 1641 1642 func (v *Phi) Operands(rands []*Value) []*Value { 1643 for i := range v.Edges { 1644 rands = append(rands, &v.Edges[i]) 1645 } 1646 return rands 1647 } 1648 1649 func (v *Range) Operands(rands []*Value) []*Value { 1650 return append(rands, &v.X) 1651 } 1652 1653 func (s *Return) Operands(rands []*Value) []*Value { 1654 for i := range s.Results { 1655 rands = append(rands, &s.Results[i]) 1656 } 1657 return rands 1658 } 1659 1660 func (*RunDefers) Operands(rands []*Value) []*Value { 1661 return rands 1662 } 1663 1664 func (v *Select) Operands(rands []*Value) []*Value { 1665 for i := range v.States { 1666 rands = append(rands, &v.States[i].Chan, &v.States[i].Send) 1667 } 1668 return rands 1669 } 1670 1671 func (s *Send) Operands(rands []*Value) []*Value { 1672 return append(rands, &s.Chan, &s.X) 1673 } 1674 1675 func (v *Slice) Operands(rands []*Value) []*Value { 1676 return append(rands, &v.X, &v.Low, &v.High, &v.Max) 1677 } 1678 1679 func (s *Store) Operands(rands []*Value) []*Value { 1680 return append(rands, &s.Addr, &s.Val) 1681 } 1682 1683 func (v *TypeAssert) Operands(rands []*Value) []*Value { 1684 return append(rands, &v.X) 1685 } 1686 1687 func (v *UnOp) Operands(rands []*Value) []*Value { 1688 return append(rands, &v.X) 1689 } 1690 1691 // Non-Instruction Values: 1692 func (v *Builtin) Operands(rands []*Value) []*Value { return rands } 1693 func (v *FreeVar) Operands(rands []*Value) []*Value { return rands } 1694 func (v *Const) Operands(rands []*Value) []*Value { return rands } 1695 func (v *Function) Operands(rands []*Value) []*Value { return rands } 1696 func (v *Global) Operands(rands []*Value) []*Value { return rands } 1697 func (v *Parameter) Operands(rands []*Value) []*Value { return rands }