github.com/jdgcs/sqlite3@v1.12.1-0.20210908114423-bc5f96e4dd51/testdata/tcl/whereF.test (about) 1 # 2012 November 9 2 # 3 # The author disclaims copyright to this source code. In place of 4 # a legal notice, here is a blessing: 5 # 6 # May you do good and not evil. 7 # May you find forgiveness for yourself and forgive others. 8 # May you share freely, never taking more than you give. 9 # 10 #*********************************************************************** 11 # 12 # Test cases for query planning decisions. 13 14 15 # 16 # The tests in this file demonstrate the behaviour of the query planner 17 # in determining the order in which joined tables are scanned. 18 # 19 # Assume there are two tables being joined - t1 and t2. Each has a cost 20 # if it is the outer loop, and a cost if it is the inner loop. As follows: 21 # 22 # t1(outer) - cost of scanning t1 as the outer loop. 23 # t1(inner) - cost of scanning t1 as the inner loop. 24 # t2(outer) - cost of scanning t2 as the outer loop. 25 # t2(inner) - cost of scanning t2 as the inner loop. 26 # 27 # Depending on the order in which the planner nests the scans, the total 28 # cost of the join query is one of: 29 # 30 # t1(outer) * t2(inner) 31 # t2(outer) * t1(inner) 32 # 33 # The tests in this file attempt to verify that the planner nests joins in 34 # the correct order when the following are true: 35 # 36 # + (t1(outer) * t2(inner)) > (t1(inner) * t2(outer) 37 # + t1(outer) < t2(outer) 38 # 39 # In other words, when the best overall query plan has t2 as the outer loop, 40 # but when the outer loop is considered independent of the inner, t1 is the 41 # most efficient choice. 42 # 43 # In order to make them more predictable, automatic indexes are turned off for 44 # the tests in this file. 45 # 46 47 set testdir [file dirname $argv0] 48 source $testdir/tester.tcl 49 set testprefix whereF 50 51 do_execsql_test 1.0 { 52 PRAGMA automatic_index = 0; 53 CREATE TABLE t1(a, b, c); 54 CREATE TABLE t2(d, e, f); 55 CREATE UNIQUE INDEX i1 ON t1(a); 56 CREATE UNIQUE INDEX i2 ON t2(d); 57 } {} 58 59 foreach {tn sql} { 60 1 "SELECT * FROM t1, t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10" 61 2 "SELECT * FROM t2, t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10" 62 3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10" 63 } { 64 do_test 1.$tn { 65 db eval "EXPLAIN QUERY PLAN $sql" 66 } {/.*SCAN t2\y.*SEARCH t1\y.*/} 67 } 68 69 do_execsql_test 2.0 { 70 DROP TABLE t1; 71 DROP TABLE t2; 72 CREATE TABLE t1(a, b, c); 73 CREATE TABLE t2(d, e, f); 74 75 CREATE UNIQUE INDEX i1 ON t1(a); 76 CREATE UNIQUE INDEX i2 ON t1(b); 77 CREATE UNIQUE INDEX i3 ON t2(d); 78 } {} 79 80 foreach {tn sql} { 81 1 "SELECT * FROM t1, t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e" 82 2 "SELECT * FROM t2, t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e" 83 3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e" 84 } { 85 do_test 2.$tn { 86 db eval "EXPLAIN QUERY PLAN $sql" 87 } {/.*SCAN t2\y.*SEARCH t1\y.*/} 88 } 89 90 do_execsql_test 3.0 { 91 DROP TABLE t1; 92 DROP TABLE t2; 93 CREATE TABLE t1(a, b, c); 94 CREATE TABLE t2(d, e, f); 95 96 CREATE UNIQUE INDEX i1 ON t1(a, b); 97 CREATE INDEX i2 ON t2(d); 98 } {} 99 100 foreach {tn sql} { 101 1 {SELECT t1.a, t1.b, t2.d, t2.e FROM t1, t2 102 WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)} 103 104 2 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2, t1 105 WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)} 106 107 3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1 108 WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)} 109 } { 110 do_test 3.$tn { 111 db eval "EXPLAIN QUERY PLAN $sql" 112 } {/.*SCAN t2\y.*SEARCH t1\y.*/} 113 } 114 115 do_execsql_test 4.0 { 116 CREATE TABLE t4(a,b,c,d,e, PRIMARY KEY(a,b,c)); 117 CREATE INDEX t4adc ON t4(a,d,c); 118 CREATE UNIQUE INDEX t4aebc ON t4(a,e,b,c); 119 EXPLAIN QUERY PLAN SELECT rowid FROM t4 WHERE a=? AND b=?; 120 } {/a=. AND b=./} 121 122 #------------------------------------------------------------------------- 123 # Test the following case: 124 # 125 # ... FROM t1, t2 WHERE ( 126 # t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1) 127 # ) 128 # 129 # where there is an index on t2(f2). The planner should use "t1" as the 130 # outer loop. The inner loop, on "t2", is an OR optimization. One pass 131 # for: 132 # 133 # t2.rowid = $1 134 # 135 # and another for: 136 # 137 # t2.f2=$1 AND $1!=-1 138 # 139 # the test is to ensure that on the second pass, the ($1!=-1) condition 140 # is tested before any seek operations are performed - i.e. outside of 141 # the loop through the f2=$1 range of the t2(f2) index. 142 # 143 reset_db 144 do_execsql_test 5.0 { 145 CREATE TABLE t1(f1); 146 CREATE TABLE t2(f2); 147 CREATE INDEX t2f ON t2(f2); 148 149 INSERT INTO t1 VALUES(-1); 150 INSERT INTO t1 VALUES(-1); 151 INSERT INTO t1 VALUES(-1); 152 INSERT INTO t1 VALUES(-1); 153 154 WITH w(i) AS ( 155 SELECT 1 UNION ALL SELECT i+1 FROM w WHERE i<1000 156 ) 157 INSERT INTO t2 SELECT -1 FROM w; 158 } 159 160 do_execsql_test 5.1 { 161 SELECT count(*) FROM t1, t2 WHERE t2.rowid = +t1.rowid 162 } {4} 163 do_test 5.2 { expr [db status vmstep]<200 } 1 164 165 do_execsql_test 5.3 { 166 SELECT count(*) FROM t1, t2 WHERE ( 167 t2.rowid = +t1.rowid OR t2.f2 = t1.f1 168 ) 169 } {4000} 170 do_test 5.4 { expr [db status vmstep]>1000 } 1 171 172 do_execsql_test 5.5 { 173 SELECT count(*) FROM t1, t2 WHERE ( 174 t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1) 175 ) 176 } {4} 177 do_test 5.6 { expr [db status vmstep]<200 } 1 178 179 # 2017-09-04 ticket b899b6042f97f52d 180 # Segfault on correlated subquery... 181 # 182 ifcapable json1&&vtab { 183 do_execsql_test 6.1 { 184 CREATE TABLE t6(x); 185 SELECT * FROM t6 WHERE 1 IN (SELECT value FROM json_each(x)); 186 } {} 187 188 do_execsql_test 6.2 { 189 DROP TABLE t6; 190 CREATE TABLE t6(a,b,c); 191 INSERT INTO t6 VALUES 192 (0,null,'{"a":0,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'), 193 (1,null,'{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'), 194 (2,null,'{"a":9,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'); 195 SELECT * FROM t6 196 WHERE (EXISTS (SELECT 1 FROM json_each(t6.c) AS x WHERE x.value=1)); 197 } {1 {} {{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}}} 198 199 # Another test case derived from a posting by Wout Mertens on the 200 # sqlite-users mailing list on 2017-10-04. 201 do_execsql_test 6.3 { 202 DROP TABLE IF EXISTS t; 203 CREATE TABLE t(json JSON); 204 SELECT * FROM t 205 WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j 206 WHERE j.value = 'meep')); 207 } {} 208 do_execsql_test 6.4 { 209 INSERT INTO t VALUES('{"xyzzy":null}'); 210 INSERT INTO t VALUES('{"foo":"meep","other":12345}'); 211 INSERT INTO t VALUES('{"foo":"bingo","alt":5.25}'); 212 SELECT * FROM t 213 WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j 214 WHERE j.value = 'meep')); 215 } {{{"foo":"meep","other":12345}}} 216 } 217 218 # 2018-01-27 219 # Ticket https://sqlite.org/src/tktview/ec32177c99ccac2b180fd3ea2083 220 # Incorrect result when using the new OR clause factoring optimization 221 # 222 # This is the original test case as reported on the sqlite-users mailing 223 # list 224 # 225 do_execsql_test 7.1 { 226 DROP TABLE IF EXISTS cd; 227 CREATE TABLE cd ( cdid INTEGER PRIMARY KEY NOT NULL, genreid integer ); 228 CREATE INDEX cd_idx_genreid ON cd (genreid); 229 INSERT INTO cd ( cdid, genreid ) VALUES 230 ( 1, 1 ), 231 ( 2, NULL ), 232 ( 3, NULL ), 233 ( 4, NULL ), 234 ( 5, NULL ); 235 236 SELECT cdid 237 FROM cd me 238 WHERE 2 > ( 239 SELECT COUNT( * ) 240 FROM cd rownum__emulation 241 WHERE 242 ( 243 me.genreid IS NOT NULL 244 AND 245 rownum__emulation.genreid IS NULL 246 ) 247 OR 248 ( 249 me.genreid IS NOT NULL 250 AND 251 rownum__emulation.genreid IS NOT NULL 252 AND 253 rownum__emulation.genreid < me.genreid 254 ) 255 OR 256 ( 257 ( me.genreid = rownum__emulation.genreid OR ( me.genreid IS NULL 258 AND rownum__emulation.genreid IS NULL ) ) 259 AND 260 rownum__emulation.cdid > me.cdid 261 ) 262 ); 263 } {4 5} 264 265 # Simplified test cases from the ticket 266 # 267 do_execsql_test 7.2 { 268 DROP TABLE IF EXISTS t1; 269 DROP TABLE IF EXISTS t2; 270 CREATE TABLE t1(a INTEGER PRIMARY KEY, b); 271 INSERT INTO t1(a,b) VALUES(1,1); 272 CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb); 273 INSERT INTO t2(aa,bb) VALUES(1,1),(2,NULL),(3,NULL); 274 SELECT ( 275 SELECT COUNT(*) FROM t2 276 WHERE ( t1.b IS NOT NULL AND t2.bb IS NULL ) 277 OR ( t2.bb < t1.b ) 278 OR ( t1.b IS t2.bb AND t2.aa > t1.a ) 279 ) 280 FROM t1; 281 } {2} 282 283 # The fix for ticket ec32177c99ccac2b180fd3ea2083 only makes a difference 284 # in the output when there is a TERM_VNULL entry in the WhereClause array. 285 # And TERM_VNULL entries are only generated when compiling with 286 # SQLITE_ENABLE_STAT4. Nevertheless, it is correct that TERM_VIRTUAL terms 287 # should not participate in the factoring optimization. In all cases other 288 # than TERM_VNULL, participation is harmless, but it does consume a few 289 # extra CPU cycles. 290 # 291 # The following test verifies that the TERM_VIRTUAL terms resulting from 292 # a GLOB operator do not appear anywhere in the generated code. This 293 # confirms that the problem is fixed, even on builds that omit STAT4. 294 # 295 do_execsql_test 7.3 { 296 DROP TABLE IF EXISTS t1; 297 DROP TABLE IF EXISTS t2; 298 CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT); 299 INSERT INTO t1(a,b) VALUES(1,'abcxyz'); 300 CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb TEXT); 301 INSERT INTO t2(aa,bb) VALUES(1,'abc'),(2,'wxyz'),(3,'xyz'); 302 CREATE INDEX t2bb ON t2(bb); 303 EXPLAIN SELECT ( 304 SELECT COUNT(*) FROM t2 305 WHERE ( t1.b GLOB 'a*z' AND t2.bb='xyz' ) 306 OR ( t2.bb = t1.b ) 307 OR ( t2.aa = t1.a ) 308 ) 309 FROM t1; 310 } {~/ (Lt|Ge) /} 311 312 finish_test