github.com/jgarto/itcv@v0.0.0-20180826224514-4eea09c1aa0d/_vendor/src/golang.org/x/tools/cmd/stringer/stringer.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Stringer is a tool to automate the creation of methods that satisfy the fmt.Stringer
     6  // interface. Given the name of a (signed or unsigned) integer type T that has constants
     7  // defined, stringer will create a new self-contained Go source file implementing
     8  //	func (t T) String() string
     9  // The file is created in the same package and directory as the package that defines T.
    10  // It has helpful defaults designed for use with go generate.
    11  //
    12  // Stringer works best with constants that are consecutive values such as created using iota,
    13  // but creates good code regardless. In the future it might also provide custom support for
    14  // constant sets that are bit patterns.
    15  //
    16  // For example, given this snippet,
    17  //
    18  //	package painkiller
    19  //
    20  //	type Pill int
    21  //
    22  //	const (
    23  //		Placebo Pill = iota
    24  //		Aspirin
    25  //		Ibuprofen
    26  //		Paracetamol
    27  //		Acetaminophen = Paracetamol
    28  //	)
    29  //
    30  // running this command
    31  //
    32  //	stringer -type=Pill
    33  //
    34  // in the same directory will create the file pill_string.go, in package painkiller,
    35  // containing a definition of
    36  //
    37  //	func (Pill) String() string
    38  //
    39  // That method will translate the value of a Pill constant to the string representation
    40  // of the respective constant name, so that the call fmt.Print(painkiller.Aspirin) will
    41  // print the string "Aspirin".
    42  //
    43  // Typically this process would be run using go generate, like this:
    44  //
    45  //	//go:generate stringer -type=Pill
    46  //
    47  // If multiple constants have the same value, the lexically first matching name will
    48  // be used (in the example, Acetaminophen will print as "Paracetamol").
    49  //
    50  // With no arguments, it processes the package in the current directory.
    51  // Otherwise, the arguments must name a single directory holding a Go package
    52  // or a set of Go source files that represent a single Go package.
    53  //
    54  // The -type flag accepts a comma-separated list of types so a single run can
    55  // generate methods for multiple types. The default output file is t_string.go,
    56  // where t is the lower-cased name of the first type listed. It can be overridden
    57  // with the -output flag.
    58  //
    59  package main // import "golang.org/x/tools/cmd/stringer"
    60  
    61  import (
    62  	"bytes"
    63  	"flag"
    64  	"fmt"
    65  	"go/ast"
    66  	"go/build"
    67  	exact "go/constant"
    68  	"go/format"
    69  	"go/parser"
    70  	"go/token"
    71  	"go/types"
    72  	"io/ioutil"
    73  	"log"
    74  	"os"
    75  	"path/filepath"
    76  	"sort"
    77  	"strings"
    78  )
    79  
    80  var (
    81  	typeNames   = flag.String("type", "", "comma-separated list of type names; must be set")
    82  	output      = flag.String("output", "", "output file name; default srcdir/<type>_string.go")
    83  	trimprefix  = flag.String("trimprefix", "", "trim the `prefix` from the generated constant names")
    84  	linecomment = flag.Bool("linecomment", false, "use line comment text as printed text when present")
    85  )
    86  
    87  // Usage is a replacement usage function for the flags package.
    88  func Usage() {
    89  	fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
    90  	fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T [directory]\n")
    91  	fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T files... # Must be a single package\n")
    92  	fmt.Fprintf(os.Stderr, "For more information, see:\n")
    93  	fmt.Fprintf(os.Stderr, "\thttp://godoc.org/golang.org/x/tools/cmd/stringer\n")
    94  	fmt.Fprintf(os.Stderr, "Flags:\n")
    95  	flag.PrintDefaults()
    96  }
    97  
    98  func main() {
    99  	log.SetFlags(0)
   100  	log.SetPrefix("stringer: ")
   101  	flag.Usage = Usage
   102  	flag.Parse()
   103  	if len(*typeNames) == 0 {
   104  		flag.Usage()
   105  		os.Exit(2)
   106  	}
   107  	types := strings.Split(*typeNames, ",")
   108  
   109  	// We accept either one directory or a list of files. Which do we have?
   110  	args := flag.Args()
   111  	if len(args) == 0 {
   112  		// Default: process whole package in current directory.
   113  		args = []string{"."}
   114  	}
   115  
   116  	// Parse the package once.
   117  	var dir string
   118  	g := Generator{
   119  		trimPrefix:  *trimprefix,
   120  		lineComment: *linecomment,
   121  	}
   122  	if len(args) == 1 && isDirectory(args[0]) {
   123  		dir = args[0]
   124  		g.parsePackageDir(args[0])
   125  	} else {
   126  		dir = filepath.Dir(args[0])
   127  		g.parsePackageFiles(args)
   128  	}
   129  
   130  	// Print the header and package clause.
   131  	g.Printf("// Code generated by \"stringer %s\"; DO NOT EDIT.\n", strings.Join(os.Args[1:], " "))
   132  	g.Printf("\n")
   133  	g.Printf("package %s", g.pkg.name)
   134  	g.Printf("\n")
   135  	g.Printf("import \"strconv\"\n") // Used by all methods.
   136  
   137  	// Run generate for each type.
   138  	for _, typeName := range types {
   139  		g.generate(typeName)
   140  	}
   141  
   142  	// Format the output.
   143  	src := g.format()
   144  
   145  	// Write to file.
   146  	outputName := *output
   147  	if outputName == "" {
   148  		baseName := fmt.Sprintf("%s_string.go", types[0])
   149  		outputName = filepath.Join(dir, strings.ToLower(baseName))
   150  	}
   151  	err := ioutil.WriteFile(outputName, src, 0644)
   152  	if err != nil {
   153  		log.Fatalf("writing output: %s", err)
   154  	}
   155  }
   156  
   157  // isDirectory reports whether the named file is a directory.
   158  func isDirectory(name string) bool {
   159  	info, err := os.Stat(name)
   160  	if err != nil {
   161  		log.Fatal(err)
   162  	}
   163  	return info.IsDir()
   164  }
   165  
   166  // Generator holds the state of the analysis. Primarily used to buffer
   167  // the output for format.Source.
   168  type Generator struct {
   169  	buf bytes.Buffer // Accumulated output.
   170  	pkg *Package     // Package we are scanning.
   171  
   172  	trimPrefix  string
   173  	lineComment bool
   174  }
   175  
   176  func (g *Generator) Printf(format string, args ...interface{}) {
   177  	fmt.Fprintf(&g.buf, format, args...)
   178  }
   179  
   180  // File holds a single parsed file and associated data.
   181  type File struct {
   182  	pkg  *Package  // Package to which this file belongs.
   183  	file *ast.File // Parsed AST.
   184  	// These fields are reset for each type being generated.
   185  	typeName string  // Name of the constant type.
   186  	values   []Value // Accumulator for constant values of that type.
   187  
   188  	trimPrefix  string
   189  	lineComment bool
   190  }
   191  
   192  type Package struct {
   193  	dir      string
   194  	name     string
   195  	defs     map[*ast.Ident]types.Object
   196  	files    []*File
   197  	typesPkg *types.Package
   198  }
   199  
   200  // parsePackageDir parses the package residing in the directory.
   201  func (g *Generator) parsePackageDir(directory string) {
   202  	pkg, err := build.Default.ImportDir(directory, 0)
   203  	if err != nil {
   204  		log.Fatalf("cannot process directory %s: %s", directory, err)
   205  	}
   206  	var names []string
   207  	names = append(names, pkg.GoFiles...)
   208  	names = append(names, pkg.CgoFiles...)
   209  	// TODO: Need to think about constants in test files. Maybe write type_string_test.go
   210  	// in a separate pass? For later.
   211  	// names = append(names, pkg.TestGoFiles...) // These are also in the "foo" package.
   212  	names = append(names, pkg.SFiles...)
   213  	names = prefixDirectory(directory, names)
   214  	g.parsePackage(directory, names, nil)
   215  }
   216  
   217  // parsePackageFiles parses the package occupying the named files.
   218  func (g *Generator) parsePackageFiles(names []string) {
   219  	g.parsePackage(".", names, nil)
   220  }
   221  
   222  // prefixDirectory places the directory name on the beginning of each name in the list.
   223  func prefixDirectory(directory string, names []string) []string {
   224  	if directory == "." {
   225  		return names
   226  	}
   227  	ret := make([]string, len(names))
   228  	for i, name := range names {
   229  		ret[i] = filepath.Join(directory, name)
   230  	}
   231  	return ret
   232  }
   233  
   234  // parsePackage analyzes the single package constructed from the named files.
   235  // If text is non-nil, it is a string to be used instead of the content of the file,
   236  // to be used for testing. parsePackage exits if there is an error.
   237  func (g *Generator) parsePackage(directory string, names []string, text interface{}) {
   238  	var files []*File
   239  	var astFiles []*ast.File
   240  	g.pkg = new(Package)
   241  	fs := token.NewFileSet()
   242  	for _, name := range names {
   243  		if !strings.HasSuffix(name, ".go") {
   244  			continue
   245  		}
   246  		parsedFile, err := parser.ParseFile(fs, name, text, parser.ParseComments)
   247  		if err != nil {
   248  			log.Fatalf("parsing package: %s: %s", name, err)
   249  		}
   250  		astFiles = append(astFiles, parsedFile)
   251  		files = append(files, &File{
   252  			file:        parsedFile,
   253  			pkg:         g.pkg,
   254  			trimPrefix:  g.trimPrefix,
   255  			lineComment: g.lineComment,
   256  		})
   257  	}
   258  	if len(astFiles) == 0 {
   259  		log.Fatalf("%s: no buildable Go files", directory)
   260  	}
   261  	g.pkg.name = astFiles[0].Name.Name
   262  	g.pkg.files = files
   263  	g.pkg.dir = directory
   264  	// Type check the package.
   265  	g.pkg.check(fs, astFiles)
   266  }
   267  
   268  // check type-checks the package. The package must be OK to proceed.
   269  func (pkg *Package) check(fs *token.FileSet, astFiles []*ast.File) {
   270  	pkg.defs = make(map[*ast.Ident]types.Object)
   271  	config := types.Config{Importer: defaultImporter(), FakeImportC: true}
   272  	info := &types.Info{
   273  		Defs: pkg.defs,
   274  	}
   275  	typesPkg, err := config.Check(pkg.dir, fs, astFiles, info)
   276  	if err != nil {
   277  		log.Fatalf("checking package: %s", err)
   278  	}
   279  	pkg.typesPkg = typesPkg
   280  }
   281  
   282  // generate produces the String method for the named type.
   283  func (g *Generator) generate(typeName string) {
   284  	values := make([]Value, 0, 100)
   285  	for _, file := range g.pkg.files {
   286  		// Set the state for this run of the walker.
   287  		file.typeName = typeName
   288  		file.values = nil
   289  		if file.file != nil {
   290  			ast.Inspect(file.file, file.genDecl)
   291  			values = append(values, file.values...)
   292  		}
   293  	}
   294  
   295  	if len(values) == 0 {
   296  		log.Fatalf("no values defined for type %s", typeName)
   297  	}
   298  	runs := splitIntoRuns(values)
   299  	// The decision of which pattern to use depends on the number of
   300  	// runs in the numbers. If there's only one, it's easy. For more than
   301  	// one, there's a tradeoff between complexity and size of the data
   302  	// and code vs. the simplicity of a map. A map takes more space,
   303  	// but so does the code. The decision here (crossover at 10) is
   304  	// arbitrary, but considers that for large numbers of runs the cost
   305  	// of the linear scan in the switch might become important, and
   306  	// rather than use yet another algorithm such as binary search,
   307  	// we punt and use a map. In any case, the likelihood of a map
   308  	// being necessary for any realistic example other than bitmasks
   309  	// is very low. And bitmasks probably deserve their own analysis,
   310  	// to be done some other day.
   311  	switch {
   312  	case len(runs) == 1:
   313  		g.buildOneRun(runs, typeName)
   314  	case len(runs) <= 10:
   315  		g.buildMultipleRuns(runs, typeName)
   316  	default:
   317  		g.buildMap(runs, typeName)
   318  	}
   319  }
   320  
   321  // splitIntoRuns breaks the values into runs of contiguous sequences.
   322  // For example, given 1,2,3,5,6,7 it returns {1,2,3},{5,6,7}.
   323  // The input slice is known to be non-empty.
   324  func splitIntoRuns(values []Value) [][]Value {
   325  	// We use stable sort so the lexically first name is chosen for equal elements.
   326  	sort.Stable(byValue(values))
   327  	// Remove duplicates. Stable sort has put the one we want to print first,
   328  	// so use that one. The String method won't care about which named constant
   329  	// was the argument, so the first name for the given value is the only one to keep.
   330  	// We need to do this because identical values would cause the switch or map
   331  	// to fail to compile.
   332  	j := 1
   333  	for i := 1; i < len(values); i++ {
   334  		if values[i].value != values[i-1].value {
   335  			values[j] = values[i]
   336  			j++
   337  		}
   338  	}
   339  	values = values[:j]
   340  	runs := make([][]Value, 0, 10)
   341  	for len(values) > 0 {
   342  		// One contiguous sequence per outer loop.
   343  		i := 1
   344  		for i < len(values) && values[i].value == values[i-1].value+1 {
   345  			i++
   346  		}
   347  		runs = append(runs, values[:i])
   348  		values = values[i:]
   349  	}
   350  	return runs
   351  }
   352  
   353  // format returns the gofmt-ed contents of the Generator's buffer.
   354  func (g *Generator) format() []byte {
   355  	src, err := format.Source(g.buf.Bytes())
   356  	if err != nil {
   357  		// Should never happen, but can arise when developing this code.
   358  		// The user can compile the output to see the error.
   359  		log.Printf("warning: internal error: invalid Go generated: %s", err)
   360  		log.Printf("warning: compile the package to analyze the error")
   361  		return g.buf.Bytes()
   362  	}
   363  	return src
   364  }
   365  
   366  // Value represents a declared constant.
   367  type Value struct {
   368  	name string // The name of the constant.
   369  	// The value is stored as a bit pattern alone. The boolean tells us
   370  	// whether to interpret it as an int64 or a uint64; the only place
   371  	// this matters is when sorting.
   372  	// Much of the time the str field is all we need; it is printed
   373  	// by Value.String.
   374  	value  uint64 // Will be converted to int64 when needed.
   375  	signed bool   // Whether the constant is a signed type.
   376  	str    string // The string representation given by the "go/exact" package.
   377  }
   378  
   379  func (v *Value) String() string {
   380  	return v.str
   381  }
   382  
   383  // byValue lets us sort the constants into increasing order.
   384  // We take care in the Less method to sort in signed or unsigned order,
   385  // as appropriate.
   386  type byValue []Value
   387  
   388  func (b byValue) Len() int      { return len(b) }
   389  func (b byValue) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
   390  func (b byValue) Less(i, j int) bool {
   391  	if b[i].signed {
   392  		return int64(b[i].value) < int64(b[j].value)
   393  	}
   394  	return b[i].value < b[j].value
   395  }
   396  
   397  // genDecl processes one declaration clause.
   398  func (f *File) genDecl(node ast.Node) bool {
   399  	decl, ok := node.(*ast.GenDecl)
   400  	if !ok || decl.Tok != token.CONST {
   401  		// We only care about const declarations.
   402  		return true
   403  	}
   404  	// The name of the type of the constants we are declaring.
   405  	// Can change if this is a multi-element declaration.
   406  	typ := ""
   407  	// Loop over the elements of the declaration. Each element is a ValueSpec:
   408  	// a list of names possibly followed by a type, possibly followed by values.
   409  	// If the type and value are both missing, we carry down the type (and value,
   410  	// but the "go/types" package takes care of that).
   411  	for _, spec := range decl.Specs {
   412  		vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST.
   413  		if vspec.Type == nil && len(vspec.Values) > 0 {
   414  			// "X = 1". With no type but a value, the constant is untyped.
   415  			// Skip this vspec and reset the remembered type.
   416  			typ = ""
   417  			continue
   418  		}
   419  		if vspec.Type != nil {
   420  			// "X T". We have a type. Remember it.
   421  			ident, ok := vspec.Type.(*ast.Ident)
   422  			if !ok {
   423  				continue
   424  			}
   425  			typ = ident.Name
   426  		}
   427  		if typ != f.typeName {
   428  			// This is not the type we're looking for.
   429  			continue
   430  		}
   431  		// We now have a list of names (from one line of source code) all being
   432  		// declared with the desired type.
   433  		// Grab their names and actual values and store them in f.values.
   434  		for _, name := range vspec.Names {
   435  			if name.Name == "_" {
   436  				continue
   437  			}
   438  			// This dance lets the type checker find the values for us. It's a
   439  			// bit tricky: look up the object declared by the name, find its
   440  			// types.Const, and extract its value.
   441  			obj, ok := f.pkg.defs[name]
   442  			if !ok {
   443  				log.Fatalf("no value for constant %s", name)
   444  			}
   445  			info := obj.Type().Underlying().(*types.Basic).Info()
   446  			if info&types.IsInteger == 0 {
   447  				log.Fatalf("can't handle non-integer constant type %s", typ)
   448  			}
   449  			value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST.
   450  			if value.Kind() != exact.Int {
   451  				log.Fatalf("can't happen: constant is not an integer %s", name)
   452  			}
   453  			i64, isInt := exact.Int64Val(value)
   454  			u64, isUint := exact.Uint64Val(value)
   455  			if !isInt && !isUint {
   456  				log.Fatalf("internal error: value of %s is not an integer: %s", name, value.String())
   457  			}
   458  			if !isInt {
   459  				u64 = uint64(i64)
   460  			}
   461  			v := Value{
   462  				name:   name.Name,
   463  				value:  u64,
   464  				signed: info&types.IsUnsigned == 0,
   465  				str:    value.String(),
   466  			}
   467  			if c := vspec.Comment; f.lineComment && c != nil && len(c.List) == 1 {
   468  				v.name = strings.TrimSpace(c.Text())
   469  			}
   470  			v.name = strings.TrimPrefix(v.name, f.trimPrefix)
   471  			f.values = append(f.values, v)
   472  		}
   473  	}
   474  	return false
   475  }
   476  
   477  // Helpers
   478  
   479  // usize returns the number of bits of the smallest unsigned integer
   480  // type that will hold n. Used to create the smallest possible slice of
   481  // integers to use as indexes into the concatenated strings.
   482  func usize(n int) int {
   483  	switch {
   484  	case n < 1<<8:
   485  		return 8
   486  	case n < 1<<16:
   487  		return 16
   488  	default:
   489  		// 2^32 is enough constants for anyone.
   490  		return 32
   491  	}
   492  }
   493  
   494  // declareIndexAndNameVars declares the index slices and concatenated names
   495  // strings representing the runs of values.
   496  func (g *Generator) declareIndexAndNameVars(runs [][]Value, typeName string) {
   497  	var indexes, names []string
   498  	for i, run := range runs {
   499  		index, name := g.createIndexAndNameDecl(run, typeName, fmt.Sprintf("_%d", i))
   500  		if len(run) != 1 {
   501  			indexes = append(indexes, index)
   502  		}
   503  		names = append(names, name)
   504  	}
   505  	g.Printf("const (\n")
   506  	for _, name := range names {
   507  		g.Printf("\t%s\n", name)
   508  	}
   509  	g.Printf(")\n\n")
   510  
   511  	if len(indexes) > 0 {
   512  		g.Printf("var (")
   513  		for _, index := range indexes {
   514  			g.Printf("\t%s\n", index)
   515  		}
   516  		g.Printf(")\n\n")
   517  	}
   518  }
   519  
   520  // declareIndexAndNameVar is the single-run version of declareIndexAndNameVars
   521  func (g *Generator) declareIndexAndNameVar(run []Value, typeName string) {
   522  	index, name := g.createIndexAndNameDecl(run, typeName, "")
   523  	g.Printf("const %s\n", name)
   524  	g.Printf("var %s\n", index)
   525  }
   526  
   527  // createIndexAndNameDecl returns the pair of declarations for the run. The caller will add "const" and "var".
   528  func (g *Generator) createIndexAndNameDecl(run []Value, typeName string, suffix string) (string, string) {
   529  	b := new(bytes.Buffer)
   530  	indexes := make([]int, len(run))
   531  	for i := range run {
   532  		b.WriteString(run[i].name)
   533  		indexes[i] = b.Len()
   534  	}
   535  	nameConst := fmt.Sprintf("_%s_name%s = %q", typeName, suffix, b.String())
   536  	nameLen := b.Len()
   537  	b.Reset()
   538  	fmt.Fprintf(b, "_%s_index%s = [...]uint%d{0, ", typeName, suffix, usize(nameLen))
   539  	for i, v := range indexes {
   540  		if i > 0 {
   541  			fmt.Fprintf(b, ", ")
   542  		}
   543  		fmt.Fprintf(b, "%d", v)
   544  	}
   545  	fmt.Fprintf(b, "}")
   546  	return b.String(), nameConst
   547  }
   548  
   549  // declareNameVars declares the concatenated names string representing all the values in the runs.
   550  func (g *Generator) declareNameVars(runs [][]Value, typeName string, suffix string) {
   551  	g.Printf("const _%s_name%s = \"", typeName, suffix)
   552  	for _, run := range runs {
   553  		for i := range run {
   554  			g.Printf("%s", run[i].name)
   555  		}
   556  	}
   557  	g.Printf("\"\n")
   558  }
   559  
   560  // buildOneRun generates the variables and String method for a single run of contiguous values.
   561  func (g *Generator) buildOneRun(runs [][]Value, typeName string) {
   562  	values := runs[0]
   563  	g.Printf("\n")
   564  	g.declareIndexAndNameVar(values, typeName)
   565  	// The generated code is simple enough to write as a Printf format.
   566  	lessThanZero := ""
   567  	if values[0].signed {
   568  		lessThanZero = "i < 0 || "
   569  	}
   570  	if values[0].value == 0 { // Signed or unsigned, 0 is still 0.
   571  		g.Printf(stringOneRun, typeName, usize(len(values)), lessThanZero)
   572  	} else {
   573  		g.Printf(stringOneRunWithOffset, typeName, values[0].String(), usize(len(values)), lessThanZero)
   574  	}
   575  }
   576  
   577  // Arguments to format are:
   578  //	[1]: type name
   579  //	[2]: size of index element (8 for uint8 etc.)
   580  //	[3]: less than zero check (for signed types)
   581  const stringOneRun = `func (i %[1]s) String() string {
   582  	if %[3]si >= %[1]s(len(_%[1]s_index)-1) {
   583  		return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")"
   584  	}
   585  	return _%[1]s_name[_%[1]s_index[i]:_%[1]s_index[i+1]]
   586  }
   587  `
   588  
   589  // Arguments to format are:
   590  //	[1]: type name
   591  //	[2]: lowest defined value for type, as a string
   592  //	[3]: size of index element (8 for uint8 etc.)
   593  //	[4]: less than zero check (for signed types)
   594  /*
   595   */
   596  const stringOneRunWithOffset = `func (i %[1]s) String() string {
   597  	i -= %[2]s
   598  	if %[4]si >= %[1]s(len(_%[1]s_index)-1) {
   599  		return "%[1]s(" + strconv.FormatInt(int64(i + %[2]s), 10) + ")"
   600  	}
   601  	return _%[1]s_name[_%[1]s_index[i] : _%[1]s_index[i+1]]
   602  }
   603  `
   604  
   605  // buildMultipleRuns generates the variables and String method for multiple runs of contiguous values.
   606  // For this pattern, a single Printf format won't do.
   607  func (g *Generator) buildMultipleRuns(runs [][]Value, typeName string) {
   608  	g.Printf("\n")
   609  	g.declareIndexAndNameVars(runs, typeName)
   610  	g.Printf("func (i %s) String() string {\n", typeName)
   611  	g.Printf("\tswitch {\n")
   612  	for i, values := range runs {
   613  		if len(values) == 1 {
   614  			g.Printf("\tcase i == %s:\n", &values[0])
   615  			g.Printf("\t\treturn _%s_name_%d\n", typeName, i)
   616  			continue
   617  		}
   618  		g.Printf("\tcase %s <= i && i <= %s:\n", &values[0], &values[len(values)-1])
   619  		if values[0].value != 0 {
   620  			g.Printf("\t\ti -= %s\n", &values[0])
   621  		}
   622  		g.Printf("\t\treturn _%s_name_%d[_%s_index_%d[i]:_%s_index_%d[i+1]]\n",
   623  			typeName, i, typeName, i, typeName, i)
   624  	}
   625  	g.Printf("\tdefault:\n")
   626  	g.Printf("\t\treturn \"%s(\" + strconv.FormatInt(int64(i), 10) + \")\"\n", typeName)
   627  	g.Printf("\t}\n")
   628  	g.Printf("}\n")
   629  }
   630  
   631  // buildMap handles the case where the space is so sparse a map is a reasonable fallback.
   632  // It's a rare situation but has simple code.
   633  func (g *Generator) buildMap(runs [][]Value, typeName string) {
   634  	g.Printf("\n")
   635  	g.declareNameVars(runs, typeName, "")
   636  	g.Printf("\nvar _%s_map = map[%s]string{\n", typeName, typeName)
   637  	n := 0
   638  	for _, values := range runs {
   639  		for _, value := range values {
   640  			g.Printf("\t%s: _%s_name[%d:%d],\n", &value, typeName, n, n+len(value.name))
   641  			n += len(value.name)
   642  		}
   643  	}
   644  	g.Printf("}\n\n")
   645  	g.Printf(stringMap, typeName)
   646  }
   647  
   648  // Argument to format is the type name.
   649  const stringMap = `func (i %[1]s) String() string {
   650  	if str, ok := _%[1]s_map[i]; ok {
   651  		return str
   652  	}
   653  	return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")"
   654  }
   655  `