github.com/jiajun1992/watercarver@v0.0.0-20191031150618-dfc2b17c0c4a/go-ethereum/accounts/abi/argument.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "encoding/json" 21 "fmt" 22 "reflect" 23 "strings" 24 ) 25 26 // Argument holds the name of the argument and the corresponding type. 27 // Types are used when packing and testing arguments. 28 type Argument struct { 29 Name string 30 Type Type 31 Indexed bool // indexed is only used by events 32 } 33 34 type Arguments []Argument 35 36 type ArgumentMarshaling struct { 37 Name string 38 Type string 39 Components []ArgumentMarshaling 40 Indexed bool 41 } 42 43 // UnmarshalJSON implements json.Unmarshaler interface 44 func (argument *Argument) UnmarshalJSON(data []byte) error { 45 var arg ArgumentMarshaling 46 err := json.Unmarshal(data, &arg) 47 if err != nil { 48 return fmt.Errorf("argument json err: %v", err) 49 } 50 51 argument.Type, err = NewType(arg.Type, arg.Components) 52 if err != nil { 53 return err 54 } 55 argument.Name = arg.Name 56 argument.Indexed = arg.Indexed 57 58 return nil 59 } 60 61 // LengthNonIndexed returns the number of arguments when not counting 'indexed' ones. Only events 62 // can ever have 'indexed' arguments, it should always be false on arguments for method input/output 63 func (arguments Arguments) LengthNonIndexed() int { 64 out := 0 65 for _, arg := range arguments { 66 if !arg.Indexed { 67 out++ 68 } 69 } 70 return out 71 } 72 73 // NonIndexed returns the arguments with indexed arguments filtered out 74 func (arguments Arguments) NonIndexed() Arguments { 75 var ret []Argument 76 for _, arg := range arguments { 77 if !arg.Indexed { 78 ret = append(ret, arg) 79 } 80 } 81 return ret 82 } 83 84 // isTuple returns true for non-atomic constructs, like (uint,uint) or uint[] 85 func (arguments Arguments) isTuple() bool { 86 return len(arguments) > 1 87 } 88 89 // Unpack performs the operation hexdata -> Go format 90 func (arguments Arguments) Unpack(v interface{}, data []byte) error { 91 // make sure the passed value is arguments pointer 92 if reflect.Ptr != reflect.ValueOf(v).Kind() { 93 return fmt.Errorf("abi: Unpack(non-pointer %T)", v) 94 } 95 marshalledValues, err := arguments.UnpackValues(data) 96 if err != nil { 97 return err 98 } 99 if arguments.isTuple() { 100 return arguments.unpackTuple(v, marshalledValues) 101 } 102 return arguments.unpackAtomic(v, marshalledValues[0]) 103 } 104 105 // UnpackIntoMap performs the operation hexdata -> mapping of argument name to argument value 106 func (arguments Arguments) UnpackIntoMap(v map[string]interface{}, data []byte) error { 107 marshalledValues, err := arguments.UnpackValues(data) 108 if err != nil { 109 return err 110 } 111 112 return arguments.unpackIntoMap(v, marshalledValues) 113 } 114 115 // unpack sets the unmarshalled value to go format. 116 // Note the dst here must be settable. 117 func unpack(t *Type, dst interface{}, src interface{}) error { 118 var ( 119 dstVal = reflect.ValueOf(dst).Elem() 120 srcVal = reflect.ValueOf(src) 121 ) 122 tuple, typ := false, t 123 for { 124 if typ.T == SliceTy || typ.T == ArrayTy { 125 typ = typ.Elem 126 continue 127 } 128 tuple = typ.T == TupleTy 129 break 130 } 131 if !tuple { 132 return set(dstVal, srcVal) 133 } 134 135 // Dereferences interface or pointer wrapper 136 dstVal = indirectInterfaceOrPtr(dstVal) 137 138 switch t.T { 139 case TupleTy: 140 if dstVal.Kind() != reflect.Struct { 141 return fmt.Errorf("abi: invalid dst value for unpack, want struct, got %s", dstVal.Kind()) 142 } 143 fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, dstVal) 144 if err != nil { 145 return err 146 } 147 for i, elem := range t.TupleElems { 148 fname := fieldmap[t.TupleRawNames[i]] 149 field := dstVal.FieldByName(fname) 150 if !field.IsValid() { 151 return fmt.Errorf("abi: field %s can't found in the given value", t.TupleRawNames[i]) 152 } 153 if err := unpack(elem, field.Addr().Interface(), srcVal.Field(i).Interface()); err != nil { 154 return err 155 } 156 } 157 return nil 158 case SliceTy: 159 if dstVal.Kind() != reflect.Slice { 160 return fmt.Errorf("abi: invalid dst value for unpack, want slice, got %s", dstVal.Kind()) 161 } 162 slice := reflect.MakeSlice(dstVal.Type(), srcVal.Len(), srcVal.Len()) 163 for i := 0; i < slice.Len(); i++ { 164 if err := unpack(t.Elem, slice.Index(i).Addr().Interface(), srcVal.Index(i).Interface()); err != nil { 165 return err 166 } 167 } 168 dstVal.Set(slice) 169 case ArrayTy: 170 if dstVal.Kind() != reflect.Array { 171 return fmt.Errorf("abi: invalid dst value for unpack, want array, got %s", dstVal.Kind()) 172 } 173 array := reflect.New(dstVal.Type()).Elem() 174 for i := 0; i < array.Len(); i++ { 175 if err := unpack(t.Elem, array.Index(i).Addr().Interface(), srcVal.Index(i).Interface()); err != nil { 176 return err 177 } 178 } 179 dstVal.Set(array) 180 } 181 return nil 182 } 183 184 // unpackIntoMap unpacks marshalledValues into the provided map[string]interface{} 185 func (arguments Arguments) unpackIntoMap(v map[string]interface{}, marshalledValues []interface{}) error { 186 // Make sure map is not nil 187 if v == nil { 188 return fmt.Errorf("abi: cannot unpack into a nil map") 189 } 190 191 for i, arg := range arguments.NonIndexed() { 192 v[arg.Name] = marshalledValues[i] 193 } 194 return nil 195 } 196 197 // unpackAtomic unpacks ( hexdata -> go ) a single value 198 func (arguments Arguments) unpackAtomic(v interface{}, marshalledValues interface{}) error { 199 if arguments.LengthNonIndexed() == 0 { 200 return nil 201 } 202 argument := arguments.NonIndexed()[0] 203 elem := reflect.ValueOf(v).Elem() 204 205 if elem.Kind() == reflect.Struct && argument.Type.T != TupleTy { 206 fieldmap, err := mapArgNamesToStructFields([]string{argument.Name}, elem) 207 if err != nil { 208 return err 209 } 210 field := elem.FieldByName(fieldmap[argument.Name]) 211 if !field.IsValid() { 212 return fmt.Errorf("abi: field %s can't be found in the given value", argument.Name) 213 } 214 return unpack(&argument.Type, field.Addr().Interface(), marshalledValues) 215 } 216 return unpack(&argument.Type, elem.Addr().Interface(), marshalledValues) 217 } 218 219 // unpackTuple unpacks ( hexdata -> go ) a batch of values. 220 func (arguments Arguments) unpackTuple(v interface{}, marshalledValues []interface{}) error { 221 var ( 222 value = reflect.ValueOf(v).Elem() 223 typ = value.Type() 224 kind = value.Kind() 225 ) 226 if err := requireUnpackKind(value, typ, kind, arguments); err != nil { 227 return err 228 } 229 230 // If the interface is a struct, get of abi->struct_field mapping 231 var abi2struct map[string]string 232 if kind == reflect.Struct { 233 var ( 234 argNames []string 235 err error 236 ) 237 for _, arg := range arguments.NonIndexed() { 238 argNames = append(argNames, arg.Name) 239 } 240 abi2struct, err = mapArgNamesToStructFields(argNames, value) 241 if err != nil { 242 return err 243 } 244 } 245 for i, arg := range arguments.NonIndexed() { 246 switch kind { 247 case reflect.Struct: 248 field := value.FieldByName(abi2struct[arg.Name]) 249 if !field.IsValid() { 250 return fmt.Errorf("abi: field %s can't be found in the given value", arg.Name) 251 } 252 if err := unpack(&arg.Type, field.Addr().Interface(), marshalledValues[i]); err != nil { 253 return err 254 } 255 case reflect.Slice, reflect.Array: 256 if value.Len() < i { 257 return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(arguments), value.Len()) 258 } 259 v := value.Index(i) 260 if err := requireAssignable(v, reflect.ValueOf(marshalledValues[i])); err != nil { 261 return err 262 } 263 if err := unpack(&arg.Type, v.Addr().Interface(), marshalledValues[i]); err != nil { 264 return err 265 } 266 default: 267 return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", typ) 268 } 269 } 270 return nil 271 272 } 273 274 // UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification, 275 // without supplying a struct to unpack into. Instead, this method returns a list containing the 276 // values. An atomic argument will be a list with one element. 277 func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error) { 278 retval := make([]interface{}, 0, arguments.LengthNonIndexed()) 279 virtualArgs := 0 280 for index, arg := range arguments.NonIndexed() { 281 marshalledValue, err := toGoType((index+virtualArgs)*32, arg.Type, data) 282 if arg.Type.T == ArrayTy && !isDynamicType(arg.Type) { 283 // If we have a static array, like [3]uint256, these are coded as 284 // just like uint256,uint256,uint256. 285 // This means that we need to add two 'virtual' arguments when 286 // we count the index from now on. 287 // 288 // Array values nested multiple levels deep are also encoded inline: 289 // [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256 290 // 291 // Calculate the full array size to get the correct offset for the next argument. 292 // Decrement it by 1, as the normal index increment is still applied. 293 virtualArgs += getTypeSize(arg.Type)/32 - 1 294 } else if arg.Type.T == TupleTy && !isDynamicType(arg.Type) { 295 // If we have a static tuple, like (uint256, bool, uint256), these are 296 // coded as just like uint256,bool,uint256 297 virtualArgs += getTypeSize(arg.Type)/32 - 1 298 } 299 if err != nil { 300 return nil, err 301 } 302 retval = append(retval, marshalledValue) 303 } 304 return retval, nil 305 } 306 307 // PackValues performs the operation Go format -> Hexdata 308 // It is the semantic opposite of UnpackValues 309 func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) { 310 return arguments.Pack(args...) 311 } 312 313 // Pack performs the operation Go format -> Hexdata 314 func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) { 315 // Make sure arguments match up and pack them 316 abiArgs := arguments 317 if len(args) != len(abiArgs) { 318 return nil, fmt.Errorf("argument count mismatch: %d for %d", len(args), len(abiArgs)) 319 } 320 // variable input is the output appended at the end of packed 321 // output. This is used for strings and bytes types input. 322 var variableInput []byte 323 324 // input offset is the bytes offset for packed output 325 inputOffset := 0 326 for _, abiArg := range abiArgs { 327 inputOffset += getTypeSize(abiArg.Type) 328 } 329 var ret []byte 330 for i, a := range args { 331 input := abiArgs[i] 332 // pack the input 333 packed, err := input.Type.pack(reflect.ValueOf(a)) 334 if err != nil { 335 return nil, err 336 } 337 // check for dynamic types 338 if isDynamicType(input.Type) { 339 // set the offset 340 ret = append(ret, packNum(reflect.ValueOf(inputOffset))...) 341 // calculate next offset 342 inputOffset += len(packed) 343 // append to variable input 344 variableInput = append(variableInput, packed...) 345 } else { 346 // append the packed value to the input 347 ret = append(ret, packed...) 348 } 349 } 350 // append the variable input at the end of the packed input 351 ret = append(ret, variableInput...) 352 353 return ret, nil 354 } 355 356 // ToCamelCase converts an under-score string to a camel-case string 357 func ToCamelCase(input string) string { 358 parts := strings.Split(input, "_") 359 for i, s := range parts { 360 if len(s) > 0 { 361 parts[i] = strings.ToUpper(s[:1]) + s[1:] 362 } 363 } 364 return strings.Join(parts, "") 365 }