github.com/jimmyx0x/go-ethereum@v1.10.28/accounts/abi/type.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "errors" 21 "fmt" 22 "reflect" 23 "regexp" 24 "strconv" 25 "strings" 26 "unicode" 27 "unicode/utf8" 28 29 "github.com/ethereum/go-ethereum/common" 30 ) 31 32 // Type enumerator 33 const ( 34 IntTy byte = iota 35 UintTy 36 BoolTy 37 StringTy 38 SliceTy 39 ArrayTy 40 TupleTy 41 AddressTy 42 FixedBytesTy 43 BytesTy 44 HashTy 45 FixedPointTy 46 FunctionTy 47 ) 48 49 // Type is the reflection of the supported argument type. 50 type Type struct { 51 Elem *Type 52 Size int 53 T byte // Our own type checking 54 55 stringKind string // holds the unparsed string for deriving signatures 56 57 // Tuple relative fields 58 TupleRawName string // Raw struct name defined in source code, may be empty. 59 TupleElems []*Type // Type information of all tuple fields 60 TupleRawNames []string // Raw field name of all tuple fields 61 TupleType reflect.Type // Underlying struct of the tuple 62 } 63 64 var ( 65 // typeRegex parses the abi sub types 66 typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?") 67 ) 68 69 // NewType creates a new reflection type of abi type given in t. 70 func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) { 71 // check that array brackets are equal if they exist 72 if strings.Count(t, "[") != strings.Count(t, "]") { 73 return Type{}, fmt.Errorf("invalid arg type in abi") 74 } 75 typ.stringKind = t 76 77 // if there are brackets, get ready to go into slice/array mode and 78 // recursively create the type 79 if strings.Count(t, "[") != 0 { 80 // Note internalType can be empty here. 81 subInternal := internalType 82 if i := strings.LastIndex(internalType, "["); i != -1 { 83 subInternal = subInternal[:i] 84 } 85 // recursively embed the type 86 i := strings.LastIndex(t, "[") 87 embeddedType, err := NewType(t[:i], subInternal, components) 88 if err != nil { 89 return Type{}, err 90 } 91 // grab the last cell and create a type from there 92 sliced := t[i:] 93 // grab the slice size with regexp 94 re := regexp.MustCompile("[0-9]+") 95 intz := re.FindAllString(sliced, -1) 96 97 if len(intz) == 0 { 98 // is a slice 99 typ.T = SliceTy 100 typ.Elem = &embeddedType 101 typ.stringKind = embeddedType.stringKind + sliced 102 } else if len(intz) == 1 { 103 // is an array 104 typ.T = ArrayTy 105 typ.Elem = &embeddedType 106 typ.Size, err = strconv.Atoi(intz[0]) 107 if err != nil { 108 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 109 } 110 typ.stringKind = embeddedType.stringKind + sliced 111 } else { 112 return Type{}, fmt.Errorf("invalid formatting of array type") 113 } 114 return typ, err 115 } 116 // parse the type and size of the abi-type. 117 matches := typeRegex.FindAllStringSubmatch(t, -1) 118 if len(matches) == 0 { 119 return Type{}, fmt.Errorf("invalid type '%v'", t) 120 } 121 parsedType := matches[0] 122 123 // varSize is the size of the variable 124 var varSize int 125 if len(parsedType[3]) > 0 { 126 var err error 127 varSize, err = strconv.Atoi(parsedType[2]) 128 if err != nil { 129 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 130 } 131 } else { 132 if parsedType[0] == "uint" || parsedType[0] == "int" { 133 // this should fail because it means that there's something wrong with 134 // the abi type (the compiler should always format it to the size...always) 135 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 136 } 137 } 138 // varType is the parsed abi type 139 switch varType := parsedType[1]; varType { 140 case "int": 141 typ.Size = varSize 142 typ.T = IntTy 143 case "uint": 144 typ.Size = varSize 145 typ.T = UintTy 146 case "bool": 147 typ.T = BoolTy 148 case "address": 149 typ.Size = 20 150 typ.T = AddressTy 151 case "string": 152 typ.T = StringTy 153 case "bytes": 154 if varSize == 0 { 155 typ.T = BytesTy 156 } else { 157 if varSize > 32 { 158 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 159 } 160 typ.T = FixedBytesTy 161 typ.Size = varSize 162 } 163 case "tuple": 164 var ( 165 fields []reflect.StructField 166 elems []*Type 167 names []string 168 expression string // canonical parameter expression 169 used = make(map[string]bool) 170 ) 171 expression += "(" 172 for idx, c := range components { 173 cType, err := NewType(c.Type, c.InternalType, c.Components) 174 if err != nil { 175 return Type{}, err 176 } 177 name := ToCamelCase(c.Name) 178 if name == "" { 179 return Type{}, errors.New("abi: purely anonymous or underscored field is not supported") 180 } 181 fieldName := ResolveNameConflict(name, func(s string) bool { return used[s] }) 182 if err != nil { 183 return Type{}, err 184 } 185 used[fieldName] = true 186 if !isValidFieldName(fieldName) { 187 return Type{}, fmt.Errorf("field %d has invalid name", idx) 188 } 189 fields = append(fields, reflect.StructField{ 190 Name: fieldName, // reflect.StructOf will panic for any exported field. 191 Type: cType.GetType(), 192 Tag: reflect.StructTag("json:\"" + c.Name + "\""), 193 }) 194 elems = append(elems, &cType) 195 names = append(names, c.Name) 196 expression += cType.stringKind 197 if idx != len(components)-1 { 198 expression += "," 199 } 200 } 201 expression += ")" 202 203 typ.TupleType = reflect.StructOf(fields) 204 typ.TupleElems = elems 205 typ.TupleRawNames = names 206 typ.T = TupleTy 207 typ.stringKind = expression 208 209 const structPrefix = "struct " 210 // After solidity 0.5.10, a new field of abi "internalType" 211 // is introduced. From that we can obtain the struct name 212 // user defined in the source code. 213 if internalType != "" && strings.HasPrefix(internalType, structPrefix) { 214 // Foo.Bar type definition is not allowed in golang, 215 // convert the format to FooBar 216 typ.TupleRawName = strings.ReplaceAll(internalType[len(structPrefix):], ".", "") 217 } 218 219 case "function": 220 typ.T = FunctionTy 221 typ.Size = 24 222 default: 223 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 224 } 225 226 return 227 } 228 229 // GetType returns the reflection type of the ABI type. 230 func (t Type) GetType() reflect.Type { 231 switch t.T { 232 case IntTy: 233 return reflectIntType(false, t.Size) 234 case UintTy: 235 return reflectIntType(true, t.Size) 236 case BoolTy: 237 return reflect.TypeOf(false) 238 case StringTy: 239 return reflect.TypeOf("") 240 case SliceTy: 241 return reflect.SliceOf(t.Elem.GetType()) 242 case ArrayTy: 243 return reflect.ArrayOf(t.Size, t.Elem.GetType()) 244 case TupleTy: 245 return t.TupleType 246 case AddressTy: 247 return reflect.TypeOf(common.Address{}) 248 case FixedBytesTy: 249 return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0))) 250 case BytesTy: 251 return reflect.SliceOf(reflect.TypeOf(byte(0))) 252 case HashTy: 253 // hashtype currently not used 254 return reflect.ArrayOf(32, reflect.TypeOf(byte(0))) 255 case FixedPointTy: 256 // fixedpoint type currently not used 257 return reflect.ArrayOf(32, reflect.TypeOf(byte(0))) 258 case FunctionTy: 259 return reflect.ArrayOf(24, reflect.TypeOf(byte(0))) 260 default: 261 panic("Invalid type") 262 } 263 } 264 265 // String implements Stringer. 266 func (t Type) String() (out string) { 267 return t.stringKind 268 } 269 270 func (t Type) pack(v reflect.Value) ([]byte, error) { 271 // dereference pointer first if it's a pointer 272 v = indirect(v) 273 if err := typeCheck(t, v); err != nil { 274 return nil, err 275 } 276 277 switch t.T { 278 case SliceTy, ArrayTy: 279 var ret []byte 280 281 if t.requiresLengthPrefix() { 282 // append length 283 ret = append(ret, packNum(reflect.ValueOf(v.Len()))...) 284 } 285 286 // calculate offset if any 287 offset := 0 288 offsetReq := isDynamicType(*t.Elem) 289 if offsetReq { 290 offset = getTypeSize(*t.Elem) * v.Len() 291 } 292 var tail []byte 293 for i := 0; i < v.Len(); i++ { 294 val, err := t.Elem.pack(v.Index(i)) 295 if err != nil { 296 return nil, err 297 } 298 if !offsetReq { 299 ret = append(ret, val...) 300 continue 301 } 302 ret = append(ret, packNum(reflect.ValueOf(offset))...) 303 offset += len(val) 304 tail = append(tail, val...) 305 } 306 return append(ret, tail...), nil 307 case TupleTy: 308 // (T1,...,Tk) for k >= 0 and any types T1, …, Tk 309 // enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k)) 310 // where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static 311 // type as 312 // head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string) 313 // and as 314 // head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1)))) 315 // tail(X(i)) = enc(X(i)) 316 // otherwise, i.e. if Ti is a dynamic type. 317 fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v) 318 if err != nil { 319 return nil, err 320 } 321 // Calculate prefix occupied size. 322 offset := 0 323 for _, elem := range t.TupleElems { 324 offset += getTypeSize(*elem) 325 } 326 var ret, tail []byte 327 for i, elem := range t.TupleElems { 328 field := v.FieldByName(fieldmap[t.TupleRawNames[i]]) 329 if !field.IsValid() { 330 return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i]) 331 } 332 val, err := elem.pack(field) 333 if err != nil { 334 return nil, err 335 } 336 if isDynamicType(*elem) { 337 ret = append(ret, packNum(reflect.ValueOf(offset))...) 338 tail = append(tail, val...) 339 offset += len(val) 340 } else { 341 ret = append(ret, val...) 342 } 343 } 344 return append(ret, tail...), nil 345 346 default: 347 return packElement(t, v) 348 } 349 } 350 351 // requireLengthPrefix returns whether the type requires any sort of length 352 // prefixing. 353 func (t Type) requiresLengthPrefix() bool { 354 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy 355 } 356 357 // isDynamicType returns true if the type is dynamic. 358 // The following types are called “dynamic”: 359 // * bytes 360 // * string 361 // * T[] for any T 362 // * T[k] for any dynamic T and any k >= 0 363 // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k 364 func isDynamicType(t Type) bool { 365 if t.T == TupleTy { 366 for _, elem := range t.TupleElems { 367 if isDynamicType(*elem) { 368 return true 369 } 370 } 371 return false 372 } 373 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem)) 374 } 375 376 // getTypeSize returns the size that this type needs to occupy. 377 // We distinguish static and dynamic types. Static types are encoded in-place 378 // and dynamic types are encoded at a separately allocated location after the 379 // current block. 380 // So for a static variable, the size returned represents the size that the 381 // variable actually occupies. 382 // For a dynamic variable, the returned size is fixed 32 bytes, which is used 383 // to store the location reference for actual value storage. 384 func getTypeSize(t Type) int { 385 if t.T == ArrayTy && !isDynamicType(*t.Elem) { 386 // Recursively calculate type size if it is a nested array 387 if t.Elem.T == ArrayTy || t.Elem.T == TupleTy { 388 return t.Size * getTypeSize(*t.Elem) 389 } 390 return t.Size * 32 391 } else if t.T == TupleTy && !isDynamicType(t) { 392 total := 0 393 for _, elem := range t.TupleElems { 394 total += getTypeSize(*elem) 395 } 396 return total 397 } 398 return 32 399 } 400 401 // isLetter reports whether a given 'rune' is classified as a Letter. 402 // This method is copied from reflect/type.go 403 func isLetter(ch rune) bool { 404 return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch) 405 } 406 407 // isValidFieldName checks if a string is a valid (struct) field name or not. 408 // 409 // According to the language spec, a field name should be an identifier. 410 // 411 // identifier = letter { letter | unicode_digit } . 412 // letter = unicode_letter | "_" . 413 // This method is copied from reflect/type.go 414 func isValidFieldName(fieldName string) bool { 415 for i, c := range fieldName { 416 if i == 0 && !isLetter(c) { 417 return false 418 } 419 420 if !(isLetter(c) || unicode.IsDigit(c)) { 421 return false 422 } 423 } 424 425 return len(fieldName) > 0 426 }