github.com/jimmyx0x/go-ethereum@v1.10.28/les/flowcontrol/manager.go (about)

     1  // Copyright 2016 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package flowcontrol
    18  
    19  import (
    20  	"fmt"
    21  	"math"
    22  	"sync"
    23  	"time"
    24  
    25  	"github.com/ethereum/go-ethereum/common/mclock"
    26  	"github.com/ethereum/go-ethereum/common/prque"
    27  )
    28  
    29  // cmNodeFields are ClientNode fields used by the client manager
    30  // Note: these fields are locked by the client manager's mutex
    31  type cmNodeFields struct {
    32  	corrBufValue   int64 // buffer value adjusted with the extra recharge amount
    33  	rcLastIntValue int64 // past recharge integrator value when corrBufValue was last updated
    34  	rcFullIntValue int64 // future recharge integrator value when corrBufValue will reach maximum
    35  	queueIndex     int   // position in the recharge queue (-1 if not queued)
    36  }
    37  
    38  // FixedPointMultiplier is applied to the recharge integrator and the recharge curve.
    39  //
    40  // Note: fixed point arithmetic is required for the integrator because it is a
    41  // constantly increasing value that can wrap around int64 limits (which behavior is
    42  // also supported by the priority queue). A floating point value would gradually lose
    43  // precision in this application.
    44  // The recharge curve and all recharge values are encoded as fixed point because
    45  // sumRecharge is frequently updated by adding or subtracting individual recharge
    46  // values and perfect precision is required.
    47  const FixedPointMultiplier = 1000000
    48  
    49  var (
    50  	capacityDropFactor          = 0.1
    51  	capacityRaiseTC             = 1 / (3 * float64(time.Hour)) // time constant for raising the capacity factor
    52  	capacityRaiseThresholdRatio = 1.125                        // total/connected capacity ratio threshold for raising the capacity factor
    53  )
    54  
    55  // ClientManager controls the capacity assigned to the clients of a server.
    56  // Since ServerParams guarantee a safe lower estimate for processable requests
    57  // even in case of all clients being active, ClientManager calculates a
    58  // corrugated buffer value and usually allows a higher remaining buffer value
    59  // to be returned with each reply.
    60  type ClientManager struct {
    61  	clock mclock.Clock
    62  	lock  sync.Mutex
    63  	stop  chan chan struct{}
    64  
    65  	curve                                      PieceWiseLinear
    66  	sumRecharge, totalRecharge, totalConnected uint64
    67  	logTotalCap, totalCapacity                 float64
    68  	logTotalCapRaiseLimit                      float64
    69  	minLogTotalCap, maxLogTotalCap             float64
    70  	capacityRaiseThreshold                     uint64
    71  	capLastUpdate                              mclock.AbsTime
    72  	totalCapacityCh                            chan uint64
    73  
    74  	// recharge integrator is increasing in each moment with a rate of
    75  	// (totalRecharge / sumRecharge)*FixedPointMultiplier or 0 if sumRecharge==0
    76  	rcLastUpdate   mclock.AbsTime // last time the recharge integrator was updated
    77  	rcLastIntValue int64          // last updated value of the recharge integrator
    78  	// recharge queue is a priority queue with currently recharging client nodes
    79  	// as elements. The priority value is rcFullIntValue which allows to quickly
    80  	// determine which client will first finish recharge.
    81  	rcQueue *prque.Prque
    82  }
    83  
    84  // NewClientManager returns a new client manager.
    85  // Client manager enhances flow control performance by allowing client buffers
    86  // to recharge quicker than the minimum guaranteed recharge rate if possible.
    87  // The sum of all minimum recharge rates (sumRecharge) is updated each time
    88  // a clients starts or finishes buffer recharging. Then an adjusted total
    89  // recharge rate is calculated using a piecewise linear recharge curve:
    90  //
    91  // totalRecharge = curve(sumRecharge)
    92  // (totalRecharge >= sumRecharge is enforced)
    93  //
    94  // Then the "bonus" buffer recharge is distributed between currently recharging
    95  // clients proportionally to their minimum recharge rates.
    96  //
    97  // Note: total recharge is proportional to the average number of parallel running
    98  // serving threads. A recharge value of 1000000 corresponds to one thread in average.
    99  // The maximum number of allowed serving threads should always be considerably
   100  // higher than the targeted average number.
   101  //
   102  // Note 2: although it is possible to specify a curve allowing the total target
   103  // recharge starting from zero sumRecharge, it makes sense to add a linear ramp
   104  // starting from zero in order to not let a single low-priority client use up
   105  // the entire server capacity and thus ensure quick availability for others at
   106  // any moment.
   107  func NewClientManager(curve PieceWiseLinear, clock mclock.Clock) *ClientManager {
   108  	cm := &ClientManager{
   109  		clock:         clock,
   110  		rcQueue:       prque.NewWrapAround(func(a interface{}, i int) { a.(*ClientNode).queueIndex = i }),
   111  		capLastUpdate: clock.Now(),
   112  		stop:          make(chan chan struct{}),
   113  	}
   114  	if curve != nil {
   115  		cm.SetRechargeCurve(curve)
   116  	}
   117  	go func() {
   118  		// regularly recalculate and update total capacity
   119  		for {
   120  			select {
   121  			case <-time.After(time.Minute):
   122  				cm.lock.Lock()
   123  				cm.updateTotalCapacity(cm.clock.Now(), true)
   124  				cm.lock.Unlock()
   125  			case stop := <-cm.stop:
   126  				close(stop)
   127  				return
   128  			}
   129  		}
   130  	}()
   131  	return cm
   132  }
   133  
   134  // Stop stops the client manager
   135  func (cm *ClientManager) Stop() {
   136  	stop := make(chan struct{})
   137  	cm.stop <- stop
   138  	<-stop
   139  }
   140  
   141  // SetRechargeCurve updates the recharge curve
   142  func (cm *ClientManager) SetRechargeCurve(curve PieceWiseLinear) {
   143  	cm.lock.Lock()
   144  	defer cm.lock.Unlock()
   145  
   146  	now := cm.clock.Now()
   147  	cm.updateRecharge(now)
   148  	cm.curve = curve
   149  	if len(curve) > 0 {
   150  		cm.totalRecharge = curve[len(curve)-1].Y
   151  	} else {
   152  		cm.totalRecharge = 0
   153  	}
   154  }
   155  
   156  // SetCapacityLimits sets a threshold value used for raising capFactor.
   157  // Either if the difference between total allowed and connected capacity is less
   158  // than this threshold or if their ratio is less than capacityRaiseThresholdRatio
   159  // then capFactor is allowed to slowly raise.
   160  func (cm *ClientManager) SetCapacityLimits(min, max, raiseThreshold uint64) {
   161  	if min < 1 {
   162  		min = 1
   163  	}
   164  	cm.minLogTotalCap = math.Log(float64(min))
   165  	if max < 1 {
   166  		max = 1
   167  	}
   168  	cm.maxLogTotalCap = math.Log(float64(max))
   169  	cm.logTotalCap = cm.maxLogTotalCap
   170  	cm.capacityRaiseThreshold = raiseThreshold
   171  	cm.refreshCapacity()
   172  }
   173  
   174  // connect should be called when a client is connected, before passing it to any
   175  // other ClientManager function
   176  func (cm *ClientManager) connect(node *ClientNode) {
   177  	cm.lock.Lock()
   178  	defer cm.lock.Unlock()
   179  
   180  	now := cm.clock.Now()
   181  	cm.updateRecharge(now)
   182  	node.corrBufValue = int64(node.params.BufLimit)
   183  	node.rcLastIntValue = cm.rcLastIntValue
   184  	node.queueIndex = -1
   185  	cm.updateTotalCapacity(now, true)
   186  	cm.totalConnected += node.params.MinRecharge
   187  	cm.updateRaiseLimit()
   188  }
   189  
   190  // disconnect should be called when a client is disconnected
   191  func (cm *ClientManager) disconnect(node *ClientNode) {
   192  	cm.lock.Lock()
   193  	defer cm.lock.Unlock()
   194  
   195  	now := cm.clock.Now()
   196  	cm.updateRecharge(cm.clock.Now())
   197  	cm.updateTotalCapacity(now, true)
   198  	cm.totalConnected -= node.params.MinRecharge
   199  	cm.updateRaiseLimit()
   200  }
   201  
   202  // accepted is called when a request with given maximum cost is accepted.
   203  // It returns a priority indicator for the request which is used to determine placement
   204  // in the serving queue. Older requests have higher priority by default. If the client
   205  // is almost out of buffer, request priority is reduced.
   206  func (cm *ClientManager) accepted(node *ClientNode, maxCost uint64, now mclock.AbsTime) (priority int64) {
   207  	cm.lock.Lock()
   208  	defer cm.lock.Unlock()
   209  
   210  	cm.updateNodeRc(node, -int64(maxCost), &node.params, now)
   211  	rcTime := (node.params.BufLimit - uint64(node.corrBufValue)) * FixedPointMultiplier / node.params.MinRecharge
   212  	return -int64(now) - int64(rcTime)
   213  }
   214  
   215  // processed updates the client buffer according to actual request cost after
   216  // serving has been finished.
   217  //
   218  // Note: processed should always be called for all accepted requests
   219  func (cm *ClientManager) processed(node *ClientNode, maxCost, realCost uint64, now mclock.AbsTime) {
   220  	if realCost > maxCost {
   221  		realCost = maxCost
   222  	}
   223  	cm.updateBuffer(node, int64(maxCost-realCost), now)
   224  }
   225  
   226  // updateBuffer recalculates the corrected buffer value, adds the given value to it
   227  // and updates the node's actual buffer value if possible
   228  func (cm *ClientManager) updateBuffer(node *ClientNode, add int64, now mclock.AbsTime) {
   229  	cm.lock.Lock()
   230  	defer cm.lock.Unlock()
   231  
   232  	cm.updateNodeRc(node, add, &node.params, now)
   233  	if node.corrBufValue > node.bufValue {
   234  		if node.log != nil {
   235  			node.log.add(now, fmt.Sprintf("corrected  bv=%d  oldBv=%d", node.corrBufValue, node.bufValue))
   236  		}
   237  		node.bufValue = node.corrBufValue
   238  	}
   239  }
   240  
   241  // updateParams updates the flow control parameters of a client node
   242  func (cm *ClientManager) updateParams(node *ClientNode, params ServerParams, now mclock.AbsTime) {
   243  	cm.lock.Lock()
   244  	defer cm.lock.Unlock()
   245  
   246  	cm.updateRecharge(now)
   247  	cm.updateTotalCapacity(now, true)
   248  	cm.totalConnected += params.MinRecharge - node.params.MinRecharge
   249  	cm.updateRaiseLimit()
   250  	cm.updateNodeRc(node, 0, &params, now)
   251  }
   252  
   253  // updateRaiseLimit recalculates the limiting value until which logTotalCap
   254  // can be raised when no client freeze events occur
   255  func (cm *ClientManager) updateRaiseLimit() {
   256  	if cm.capacityRaiseThreshold == 0 {
   257  		cm.logTotalCapRaiseLimit = 0
   258  		return
   259  	}
   260  	limit := float64(cm.totalConnected + cm.capacityRaiseThreshold)
   261  	limit2 := float64(cm.totalConnected) * capacityRaiseThresholdRatio
   262  	if limit2 > limit {
   263  		limit = limit2
   264  	}
   265  	if limit < 1 {
   266  		limit = 1
   267  	}
   268  	cm.logTotalCapRaiseLimit = math.Log(limit)
   269  }
   270  
   271  // updateRecharge updates the recharge integrator and checks the recharge queue
   272  // for nodes with recently filled buffers
   273  func (cm *ClientManager) updateRecharge(now mclock.AbsTime) {
   274  	lastUpdate := cm.rcLastUpdate
   275  	cm.rcLastUpdate = now
   276  	// updating is done in multiple steps if node buffers are filled and sumRecharge
   277  	// is decreased before the given target time
   278  	for cm.sumRecharge > 0 {
   279  		sumRecharge := cm.sumRecharge
   280  		if sumRecharge > cm.totalRecharge {
   281  			sumRecharge = cm.totalRecharge
   282  		}
   283  		bonusRatio := float64(1)
   284  		v := cm.curve.ValueAt(sumRecharge)
   285  		s := float64(sumRecharge)
   286  		if v > s && s > 0 {
   287  			bonusRatio = v / s
   288  		}
   289  		dt := now - lastUpdate
   290  		// fetch the client that finishes first
   291  		rcqNode := cm.rcQueue.PopItem().(*ClientNode) // if sumRecharge > 0 then the queue cannot be empty
   292  		// check whether it has already finished
   293  		dtNext := mclock.AbsTime(float64(rcqNode.rcFullIntValue-cm.rcLastIntValue) / bonusRatio)
   294  		if dt < dtNext {
   295  			// not finished yet, put it back, update integrator according
   296  			// to current bonusRatio and return
   297  			cm.rcQueue.Push(rcqNode, -rcqNode.rcFullIntValue)
   298  			cm.rcLastIntValue += int64(bonusRatio * float64(dt))
   299  			return
   300  		}
   301  		lastUpdate += dtNext
   302  		// finished recharging, update corrBufValue and sumRecharge if necessary and do next step
   303  		if rcqNode.corrBufValue < int64(rcqNode.params.BufLimit) {
   304  			rcqNode.corrBufValue = int64(rcqNode.params.BufLimit)
   305  			cm.sumRecharge -= rcqNode.params.MinRecharge
   306  		}
   307  		cm.rcLastIntValue = rcqNode.rcFullIntValue
   308  	}
   309  }
   310  
   311  // updateNodeRc updates a node's corrBufValue and adds an external correction value.
   312  // It also adds or removes the rcQueue entry and updates ServerParams and sumRecharge if necessary.
   313  func (cm *ClientManager) updateNodeRc(node *ClientNode, bvc int64, params *ServerParams, now mclock.AbsTime) {
   314  	cm.updateRecharge(now)
   315  	wasFull := true
   316  	if node.corrBufValue != int64(node.params.BufLimit) {
   317  		wasFull = false
   318  		node.corrBufValue += (cm.rcLastIntValue - node.rcLastIntValue) * int64(node.params.MinRecharge) / FixedPointMultiplier
   319  		if node.corrBufValue > int64(node.params.BufLimit) {
   320  			node.corrBufValue = int64(node.params.BufLimit)
   321  		}
   322  		node.rcLastIntValue = cm.rcLastIntValue
   323  	}
   324  	node.corrBufValue += bvc
   325  	diff := int64(params.BufLimit - node.params.BufLimit)
   326  	if diff > 0 {
   327  		node.corrBufValue += diff
   328  	}
   329  	isFull := false
   330  	if node.corrBufValue >= int64(params.BufLimit) {
   331  		node.corrBufValue = int64(params.BufLimit)
   332  		isFull = true
   333  	}
   334  	if !wasFull {
   335  		cm.sumRecharge -= node.params.MinRecharge
   336  	}
   337  	if params != &node.params {
   338  		node.params = *params
   339  	}
   340  	if !isFull {
   341  		cm.sumRecharge += node.params.MinRecharge
   342  		if node.queueIndex != -1 {
   343  			cm.rcQueue.Remove(node.queueIndex)
   344  		}
   345  		node.rcLastIntValue = cm.rcLastIntValue
   346  		node.rcFullIntValue = cm.rcLastIntValue + (int64(node.params.BufLimit)-node.corrBufValue)*FixedPointMultiplier/int64(node.params.MinRecharge)
   347  		cm.rcQueue.Push(node, -node.rcFullIntValue)
   348  	}
   349  }
   350  
   351  // reduceTotalCapacity reduces the total capacity allowance in case of a client freeze event
   352  func (cm *ClientManager) reduceTotalCapacity(frozenCap uint64) {
   353  	cm.lock.Lock()
   354  	defer cm.lock.Unlock()
   355  
   356  	ratio := float64(1)
   357  	if frozenCap < cm.totalConnected {
   358  		ratio = float64(frozenCap) / float64(cm.totalConnected)
   359  	}
   360  	now := cm.clock.Now()
   361  	cm.updateTotalCapacity(now, false)
   362  	cm.logTotalCap -= capacityDropFactor * ratio
   363  	if cm.logTotalCap < cm.minLogTotalCap {
   364  		cm.logTotalCap = cm.minLogTotalCap
   365  	}
   366  	cm.updateTotalCapacity(now, true)
   367  }
   368  
   369  // updateTotalCapacity updates the total capacity factor. The capacity factor allows
   370  // the total capacity of the system to go over the allowed total recharge value
   371  // if clients go to frozen state sufficiently rarely.
   372  // The capacity factor is dropped instantly by a small amount if a clients is frozen.
   373  // It is raised slowly (with a large time constant) if the total connected capacity
   374  // is close to the total allowed amount and no clients are frozen.
   375  func (cm *ClientManager) updateTotalCapacity(now mclock.AbsTime, refresh bool) {
   376  	dt := now - cm.capLastUpdate
   377  	cm.capLastUpdate = now
   378  
   379  	if cm.logTotalCap < cm.logTotalCapRaiseLimit {
   380  		cm.logTotalCap += capacityRaiseTC * float64(dt)
   381  		if cm.logTotalCap > cm.logTotalCapRaiseLimit {
   382  			cm.logTotalCap = cm.logTotalCapRaiseLimit
   383  		}
   384  	}
   385  	if cm.logTotalCap > cm.maxLogTotalCap {
   386  		cm.logTotalCap = cm.maxLogTotalCap
   387  	}
   388  	if refresh {
   389  		cm.refreshCapacity()
   390  	}
   391  }
   392  
   393  // refreshCapacity recalculates the total capacity value and sends an update to the subscription
   394  // channel if the relative change of the value since the last update is more than 0.1 percent
   395  func (cm *ClientManager) refreshCapacity() {
   396  	totalCapacity := math.Exp(cm.logTotalCap)
   397  	if totalCapacity >= cm.totalCapacity*0.999 && totalCapacity <= cm.totalCapacity*1.001 {
   398  		return
   399  	}
   400  	cm.totalCapacity = totalCapacity
   401  	if cm.totalCapacityCh != nil {
   402  		select {
   403  		case cm.totalCapacityCh <- uint64(cm.totalCapacity):
   404  		default:
   405  		}
   406  	}
   407  }
   408  
   409  // SubscribeTotalCapacity returns all future updates to the total capacity value
   410  // through a channel and also returns the current value
   411  func (cm *ClientManager) SubscribeTotalCapacity(ch chan uint64) uint64 {
   412  	cm.lock.Lock()
   413  	defer cm.lock.Unlock()
   414  
   415  	cm.totalCapacityCh = ch
   416  	return uint64(cm.totalCapacity)
   417  }
   418  
   419  // PieceWiseLinear is used to describe recharge curves
   420  type PieceWiseLinear []struct{ X, Y uint64 }
   421  
   422  // ValueAt returns the curve's value at a given point
   423  func (pwl PieceWiseLinear) ValueAt(x uint64) float64 {
   424  	l := 0
   425  	h := len(pwl)
   426  	if h == 0 {
   427  		return 0
   428  	}
   429  	for h != l {
   430  		m := (l + h) / 2
   431  		if x > pwl[m].X {
   432  			l = m + 1
   433  		} else {
   434  			h = m
   435  		}
   436  	}
   437  	if l == 0 {
   438  		return float64(pwl[0].Y)
   439  	}
   440  	l--
   441  	if h == len(pwl) {
   442  		return float64(pwl[l].Y)
   443  	}
   444  	dx := pwl[h].X - pwl[l].X
   445  	if dx < 1 {
   446  		return float64(pwl[l].Y)
   447  	}
   448  	return float64(pwl[l].Y) + float64(pwl[h].Y-pwl[l].Y)*float64(x-pwl[l].X)/float64(dx)
   449  }
   450  
   451  // Valid returns true if the X coordinates of the curve points are non-strictly monotonic
   452  func (pwl PieceWiseLinear) Valid() bool {
   453  	var lastX uint64
   454  	for _, i := range pwl {
   455  		if i.X < lastX {
   456  			return false
   457  		}
   458  		lastX = i.X
   459  	}
   460  	return true
   461  }