github.com/jimmyx0x/go-ethereum@v1.10.28/trie/proof.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bytes"
    21  	"errors"
    22  	"fmt"
    23  
    24  	"github.com/ethereum/go-ethereum/common"
    25  	"github.com/ethereum/go-ethereum/ethdb"
    26  	"github.com/ethereum/go-ethereum/log"
    27  )
    28  
    29  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    30  // on the path to the value at key. The value itself is also included in the last
    31  // node and can be retrieved by verifying the proof.
    32  //
    33  // If the trie does not contain a value for key, the returned proof contains all
    34  // nodes of the longest existing prefix of the key (at least the root node), ending
    35  // with the node that proves the absence of the key.
    36  func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
    37  	// Collect all nodes on the path to key.
    38  	var (
    39  		prefix []byte
    40  		nodes  []node
    41  		tn     = t.root
    42  	)
    43  	key = keybytesToHex(key)
    44  	for len(key) > 0 && tn != nil {
    45  		switch n := tn.(type) {
    46  		case *shortNode:
    47  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    48  				// The trie doesn't contain the key.
    49  				tn = nil
    50  			} else {
    51  				tn = n.Val
    52  				prefix = append(prefix, n.Key...)
    53  				key = key[len(n.Key):]
    54  			}
    55  			nodes = append(nodes, n)
    56  		case *fullNode:
    57  			tn = n.Children[key[0]]
    58  			prefix = append(prefix, key[0])
    59  			key = key[1:]
    60  			nodes = append(nodes, n)
    61  		case hashNode:
    62  			// Retrieve the specified node from the underlying node reader.
    63  			// trie.resolveAndTrack is not used since in that function the
    64  			// loaded blob will be tracked, while it's not required here since
    65  			// all loaded nodes won't be linked to trie at all and track nodes
    66  			// may lead to out-of-memory issue.
    67  			var err error
    68  			tn, err = t.reader.node(prefix, common.BytesToHash(n))
    69  			if err != nil {
    70  				log.Error("Unhandled trie error in Trie.Prove", "err", err)
    71  				return err
    72  			}
    73  		default:
    74  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    75  		}
    76  	}
    77  	hasher := newHasher(false)
    78  	defer returnHasherToPool(hasher)
    79  
    80  	for i, n := range nodes {
    81  		if fromLevel > 0 {
    82  			fromLevel--
    83  			continue
    84  		}
    85  		var hn node
    86  		n, hn = hasher.proofHash(n)
    87  		if hash, ok := hn.(hashNode); ok || i == 0 {
    88  			// If the node's database encoding is a hash (or is the
    89  			// root node), it becomes a proof element.
    90  			enc := nodeToBytes(n)
    91  			if !ok {
    92  				hash = hasher.hashData(enc)
    93  			}
    94  			proofDb.Put(hash, enc)
    95  		}
    96  	}
    97  	return nil
    98  }
    99  
   100  // Prove constructs a merkle proof for key. The result contains all encoded nodes
   101  // on the path to the value at key. The value itself is also included in the last
   102  // node and can be retrieved by verifying the proof.
   103  //
   104  // If the trie does not contain a value for key, the returned proof contains all
   105  // nodes of the longest existing prefix of the key (at least the root node), ending
   106  // with the node that proves the absence of the key.
   107  func (t *StateTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
   108  	return t.trie.Prove(key, fromLevel, proofDb)
   109  }
   110  
   111  // VerifyProof checks merkle proofs. The given proof must contain the value for
   112  // key in a trie with the given root hash. VerifyProof returns an error if the
   113  // proof contains invalid trie nodes or the wrong value.
   114  func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) {
   115  	key = keybytesToHex(key)
   116  	wantHash := rootHash
   117  	for i := 0; ; i++ {
   118  		buf, _ := proofDb.Get(wantHash[:])
   119  		if buf == nil {
   120  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
   121  		}
   122  		n, err := decodeNode(wantHash[:], buf)
   123  		if err != nil {
   124  			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
   125  		}
   126  		keyrest, cld := get(n, key, true)
   127  		switch cld := cld.(type) {
   128  		case nil:
   129  			// The trie doesn't contain the key.
   130  			return nil, nil
   131  		case hashNode:
   132  			key = keyrest
   133  			copy(wantHash[:], cld)
   134  		case valueNode:
   135  			return cld, nil
   136  		}
   137  	}
   138  }
   139  
   140  // proofToPath converts a merkle proof to trie node path. The main purpose of
   141  // this function is recovering a node path from the merkle proof stream. All
   142  // necessary nodes will be resolved and leave the remaining as hashnode.
   143  //
   144  // The given edge proof is allowed to be an existent or non-existent proof.
   145  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
   146  	// resolveNode retrieves and resolves trie node from merkle proof stream
   147  	resolveNode := func(hash common.Hash) (node, error) {
   148  		buf, _ := proofDb.Get(hash[:])
   149  		if buf == nil {
   150  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   151  		}
   152  		n, err := decodeNode(hash[:], buf)
   153  		if err != nil {
   154  			return nil, fmt.Errorf("bad proof node %v", err)
   155  		}
   156  		return n, err
   157  	}
   158  	// If the root node is empty, resolve it first.
   159  	// Root node must be included in the proof.
   160  	if root == nil {
   161  		n, err := resolveNode(rootHash)
   162  		if err != nil {
   163  			return nil, nil, err
   164  		}
   165  		root = n
   166  	}
   167  	var (
   168  		err           error
   169  		child, parent node
   170  		keyrest       []byte
   171  		valnode       []byte
   172  	)
   173  	key, parent = keybytesToHex(key), root
   174  	for {
   175  		keyrest, child = get(parent, key, false)
   176  		switch cld := child.(type) {
   177  		case nil:
   178  			// The trie doesn't contain the key. It's possible
   179  			// the proof is a non-existing proof, but at least
   180  			// we can prove all resolved nodes are correct, it's
   181  			// enough for us to prove range.
   182  			if allowNonExistent {
   183  				return root, nil, nil
   184  			}
   185  			return nil, nil, errors.New("the node is not contained in trie")
   186  		case *shortNode:
   187  			key, parent = keyrest, child // Already resolved
   188  			continue
   189  		case *fullNode:
   190  			key, parent = keyrest, child // Already resolved
   191  			continue
   192  		case hashNode:
   193  			child, err = resolveNode(common.BytesToHash(cld))
   194  			if err != nil {
   195  				return nil, nil, err
   196  			}
   197  		case valueNode:
   198  			valnode = cld
   199  		}
   200  		// Link the parent and child.
   201  		switch pnode := parent.(type) {
   202  		case *shortNode:
   203  			pnode.Val = child
   204  		case *fullNode:
   205  			pnode.Children[key[0]] = child
   206  		default:
   207  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   208  		}
   209  		if len(valnode) > 0 {
   210  			return root, valnode, nil // The whole path is resolved
   211  		}
   212  		key, parent = keyrest, child
   213  	}
   214  }
   215  
   216  // unsetInternal removes all internal node references(hashnode, embedded node).
   217  // It should be called after a trie is constructed with two edge paths. Also
   218  // the given boundary keys must be the one used to construct the edge paths.
   219  //
   220  // It's the key step for range proof. All visited nodes should be marked dirty
   221  // since the node content might be modified. Besides it can happen that some
   222  // fullnodes only have one child which is disallowed. But if the proof is valid,
   223  // the missing children will be filled, otherwise it will be thrown anyway.
   224  //
   225  // Note we have the assumption here the given boundary keys are different
   226  // and right is larger than left.
   227  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   228  	left, right = keybytesToHex(left), keybytesToHex(right)
   229  
   230  	// Step down to the fork point. There are two scenarios can happen:
   231  	// - the fork point is a shortnode: either the key of left proof or
   232  	//   right proof doesn't match with shortnode's key.
   233  	// - the fork point is a fullnode: both two edge proofs are allowed
   234  	//   to point to a non-existent key.
   235  	var (
   236  		pos    = 0
   237  		parent node
   238  
   239  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   240  		shortForkLeft, shortForkRight int
   241  	)
   242  findFork:
   243  	for {
   244  		switch rn := (n).(type) {
   245  		case *shortNode:
   246  			rn.flags = nodeFlag{dirty: true}
   247  
   248  			// If either the key of left proof or right proof doesn't match with
   249  			// shortnode, stop here and the forkpoint is the shortnode.
   250  			if len(left)-pos < len(rn.Key) {
   251  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   252  			} else {
   253  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   254  			}
   255  			if len(right)-pos < len(rn.Key) {
   256  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   257  			} else {
   258  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   259  			}
   260  			if shortForkLeft != 0 || shortForkRight != 0 {
   261  				break findFork
   262  			}
   263  			parent = n
   264  			n, pos = rn.Val, pos+len(rn.Key)
   265  		case *fullNode:
   266  			rn.flags = nodeFlag{dirty: true}
   267  
   268  			// If either the node pointed by left proof or right proof is nil,
   269  			// stop here and the forkpoint is the fullnode.
   270  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   271  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   272  				break findFork
   273  			}
   274  			parent = n
   275  			n, pos = rn.Children[left[pos]], pos+1
   276  		default:
   277  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   278  		}
   279  	}
   280  	switch rn := n.(type) {
   281  	case *shortNode:
   282  		// There can have these five scenarios:
   283  		// - both proofs are less than the trie path => no valid range
   284  		// - both proofs are greater than the trie path => no valid range
   285  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   286  		// - left proof points to the shortnode, but right proof is greater
   287  		// - right proof points to the shortnode, but left proof is less
   288  		if shortForkLeft == -1 && shortForkRight == -1 {
   289  			return false, errors.New("empty range")
   290  		}
   291  		if shortForkLeft == 1 && shortForkRight == 1 {
   292  			return false, errors.New("empty range")
   293  		}
   294  		if shortForkLeft != 0 && shortForkRight != 0 {
   295  			// The fork point is root node, unset the entire trie
   296  			if parent == nil {
   297  				return true, nil
   298  			}
   299  			parent.(*fullNode).Children[left[pos-1]] = nil
   300  			return false, nil
   301  		}
   302  		// Only one proof points to non-existent key.
   303  		if shortForkRight != 0 {
   304  			if _, ok := rn.Val.(valueNode); ok {
   305  				// The fork point is root node, unset the entire trie
   306  				if parent == nil {
   307  					return true, nil
   308  				}
   309  				parent.(*fullNode).Children[left[pos-1]] = nil
   310  				return false, nil
   311  			}
   312  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   313  		}
   314  		if shortForkLeft != 0 {
   315  			if _, ok := rn.Val.(valueNode); ok {
   316  				// The fork point is root node, unset the entire trie
   317  				if parent == nil {
   318  					return true, nil
   319  				}
   320  				parent.(*fullNode).Children[right[pos-1]] = nil
   321  				return false, nil
   322  			}
   323  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   324  		}
   325  		return false, nil
   326  	case *fullNode:
   327  		// unset all internal nodes in the forkpoint
   328  		for i := left[pos] + 1; i < right[pos]; i++ {
   329  			rn.Children[i] = nil
   330  		}
   331  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   332  			return false, err
   333  		}
   334  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   335  			return false, err
   336  		}
   337  		return false, nil
   338  	default:
   339  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   340  	}
   341  }
   342  
   343  // unset removes all internal node references either the left most or right most.
   344  // It can meet these scenarios:
   345  //
   346  //   - The given path is existent in the trie, unset the associated nodes with the
   347  //     specific direction
   348  //   - The given path is non-existent in the trie
   349  //   - the fork point is a fullnode, the corresponding child pointed by path
   350  //     is nil, return
   351  //   - the fork point is a shortnode, the shortnode is included in the range,
   352  //     keep the entire branch and return.
   353  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   354  //     unset the entire branch.
   355  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   356  	switch cld := child.(type) {
   357  	case *fullNode:
   358  		if removeLeft {
   359  			for i := 0; i < int(key[pos]); i++ {
   360  				cld.Children[i] = nil
   361  			}
   362  			cld.flags = nodeFlag{dirty: true}
   363  		} else {
   364  			for i := key[pos] + 1; i < 16; i++ {
   365  				cld.Children[i] = nil
   366  			}
   367  			cld.flags = nodeFlag{dirty: true}
   368  		}
   369  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   370  	case *shortNode:
   371  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   372  			// Find the fork point, it's an non-existent branch.
   373  			if removeLeft {
   374  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   375  					// The key of fork shortnode is less than the path
   376  					// (it belongs to the range), unset the entire
   377  					// branch. The parent must be a fullnode.
   378  					fn := parent.(*fullNode)
   379  					fn.Children[key[pos-1]] = nil
   380  				}
   381  				//else {
   382  				// The key of fork shortnode is greater than the
   383  				// path(it doesn't belong to the range), keep
   384  				// it with the cached hash available.
   385  				//}
   386  			} else {
   387  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   388  					// The key of fork shortnode is greater than the
   389  					// path(it belongs to the range), unset the entrie
   390  					// branch. The parent must be a fullnode.
   391  					fn := parent.(*fullNode)
   392  					fn.Children[key[pos-1]] = nil
   393  				}
   394  				//else {
   395  				// The key of fork shortnode is less than the
   396  				// path(it doesn't belong to the range), keep
   397  				// it with the cached hash available.
   398  				//}
   399  			}
   400  			return nil
   401  		}
   402  		if _, ok := cld.Val.(valueNode); ok {
   403  			fn := parent.(*fullNode)
   404  			fn.Children[key[pos-1]] = nil
   405  			return nil
   406  		}
   407  		cld.flags = nodeFlag{dirty: true}
   408  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   409  	case nil:
   410  		// If the node is nil, then it's a child of the fork point
   411  		// fullnode(it's a non-existent branch).
   412  		return nil
   413  	default:
   414  		panic("it shouldn't happen") // hashNode, valueNode
   415  	}
   416  }
   417  
   418  // hasRightElement returns the indicator whether there exists more elements
   419  // on the right side of the given path. The given path can point to an existent
   420  // key or a non-existent one. This function has the assumption that the whole
   421  // path should already be resolved.
   422  func hasRightElement(node node, key []byte) bool {
   423  	pos, key := 0, keybytesToHex(key)
   424  	for node != nil {
   425  		switch rn := node.(type) {
   426  		case *fullNode:
   427  			for i := key[pos] + 1; i < 16; i++ {
   428  				if rn.Children[i] != nil {
   429  					return true
   430  				}
   431  			}
   432  			node, pos = rn.Children[key[pos]], pos+1
   433  		case *shortNode:
   434  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   435  				return bytes.Compare(rn.Key, key[pos:]) > 0
   436  			}
   437  			node, pos = rn.Val, pos+len(rn.Key)
   438  		case valueNode:
   439  			return false // We have resolved the whole path
   440  		default:
   441  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   442  		}
   443  	}
   444  	return false
   445  }
   446  
   447  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   448  // can prove the given trie leaves range is matched with the specific root.
   449  // Besides, the range should be consecutive (no gap inside) and monotonic
   450  // increasing.
   451  //
   452  // Note the given proof actually contains two edge proofs. Both of them can
   453  // be non-existent proofs. For example the first proof is for a non-existent
   454  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   455  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   456  // batch is valid.
   457  //
   458  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   459  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   460  // are paired.
   461  //
   462  // Expect the normal case, this function can also be used to verify the following
   463  // range proofs:
   464  //
   465  //   - All elements proof. In this case the proof can be nil, but the range should
   466  //     be all the leaves in the trie.
   467  //
   468  //   - One element proof. In this case no matter the edge proof is a non-existent
   469  //     proof or not, we can always verify the correctness of the proof.
   470  //
   471  //   - Zero element proof. In this case a single non-existent proof is enough to prove.
   472  //     Besides, if there are still some other leaves available on the right side, then
   473  //     an error will be returned.
   474  //
   475  // Except returning the error to indicate the proof is valid or not, the function will
   476  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   477  //
   478  // Note: This method does not verify that the proof is of minimal form. If the input
   479  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   480  // data, then the proof will still be accepted.
   481  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) {
   482  	if len(keys) != len(values) {
   483  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   484  	}
   485  	// Ensure the received batch is monotonic increasing and contains no deletions
   486  	for i := 0; i < len(keys)-1; i++ {
   487  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   488  			return false, errors.New("range is not monotonically increasing")
   489  		}
   490  	}
   491  	for _, value := range values {
   492  		if len(value) == 0 {
   493  			return false, errors.New("range contains deletion")
   494  		}
   495  	}
   496  	// Special case, there is no edge proof at all. The given range is expected
   497  	// to be the whole leaf-set in the trie.
   498  	if proof == nil {
   499  		tr := NewStackTrie(nil)
   500  		for index, key := range keys {
   501  			tr.TryUpdate(key, values[index])
   502  		}
   503  		if have, want := tr.Hash(), rootHash; have != want {
   504  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   505  		}
   506  		return false, nil // No more elements
   507  	}
   508  	// Special case, there is a provided edge proof but zero key/value
   509  	// pairs, ensure there are no more accounts / slots in the trie.
   510  	if len(keys) == 0 {
   511  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   512  		if err != nil {
   513  			return false, err
   514  		}
   515  		if val != nil || hasRightElement(root, firstKey) {
   516  			return false, errors.New("more entries available")
   517  		}
   518  		return false, nil
   519  	}
   520  	// Special case, there is only one element and two edge keys are same.
   521  	// In this case, we can't construct two edge paths. So handle it here.
   522  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   523  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   524  		if err != nil {
   525  			return false, err
   526  		}
   527  		if !bytes.Equal(firstKey, keys[0]) {
   528  			return false, errors.New("correct proof but invalid key")
   529  		}
   530  		if !bytes.Equal(val, values[0]) {
   531  			return false, errors.New("correct proof but invalid data")
   532  		}
   533  		return hasRightElement(root, firstKey), nil
   534  	}
   535  	// Ok, in all other cases, we require two edge paths available.
   536  	// First check the validity of edge keys.
   537  	if bytes.Compare(firstKey, lastKey) >= 0 {
   538  		return false, errors.New("invalid edge keys")
   539  	}
   540  	// todo(rjl493456442) different length edge keys should be supported
   541  	if len(firstKey) != len(lastKey) {
   542  		return false, errors.New("inconsistent edge keys")
   543  	}
   544  	// Convert the edge proofs to edge trie paths. Then we can
   545  	// have the same tree architecture with the original one.
   546  	// For the first edge proof, non-existent proof is allowed.
   547  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   548  	if err != nil {
   549  		return false, err
   550  	}
   551  	// Pass the root node here, the second path will be merged
   552  	// with the first one. For the last edge proof, non-existent
   553  	// proof is also allowed.
   554  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   555  	if err != nil {
   556  		return false, err
   557  	}
   558  	// Remove all internal references. All the removed parts should
   559  	// be re-filled(or re-constructed) by the given leaves range.
   560  	empty, err := unsetInternal(root, firstKey, lastKey)
   561  	if err != nil {
   562  		return false, err
   563  	}
   564  	// Rebuild the trie with the leaf stream, the shape of trie
   565  	// should be same with the original one.
   566  	tr := &Trie{root: root, reader: newEmptyReader()}
   567  	if empty {
   568  		tr.root = nil
   569  	}
   570  	for index, key := range keys {
   571  		tr.TryUpdate(key, values[index])
   572  	}
   573  	if tr.Hash() != rootHash {
   574  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   575  	}
   576  	return hasRightElement(tr.root, keys[len(keys)-1]), nil
   577  }
   578  
   579  // get returns the child of the given node. Return nil if the
   580  // node with specified key doesn't exist at all.
   581  //
   582  // There is an additional flag `skipResolved`. If it's set then
   583  // all resolved nodes won't be returned.
   584  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   585  	for {
   586  		switch n := tn.(type) {
   587  		case *shortNode:
   588  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   589  				return nil, nil
   590  			}
   591  			tn = n.Val
   592  			key = key[len(n.Key):]
   593  			if !skipResolved {
   594  				return key, tn
   595  			}
   596  		case *fullNode:
   597  			tn = n.Children[key[0]]
   598  			key = key[1:]
   599  			if !skipResolved {
   600  				return key, tn
   601  			}
   602  		case hashNode:
   603  			return key, n
   604  		case nil:
   605  			return key, nil
   606  		case valueNode:
   607  			return nil, n
   608  		default:
   609  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   610  		}
   611  	}
   612  }