github.com/jimmyx0x/go-ethereum@v1.10.28/trie/sync.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "errors" 21 "fmt" 22 "sync" 23 24 "github.com/ethereum/go-ethereum/common" 25 "github.com/ethereum/go-ethereum/common/prque" 26 "github.com/ethereum/go-ethereum/core/rawdb" 27 "github.com/ethereum/go-ethereum/ethdb" 28 "github.com/ethereum/go-ethereum/log" 29 ) 30 31 // ErrNotRequested is returned by the trie sync when it's requested to process a 32 // node it did not request. 33 var ErrNotRequested = errors.New("not requested") 34 35 // ErrAlreadyProcessed is returned by the trie sync when it's requested to process a 36 // node it already processed previously. 37 var ErrAlreadyProcessed = errors.New("already processed") 38 39 // maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The 40 // role of this value is to limit the number of trie nodes that get expanded in 41 // memory if the node was configured with a significant number of peers. 42 const maxFetchesPerDepth = 16384 43 44 // SyncPath is a path tuple identifying a particular trie node either in a single 45 // trie (account) or a layered trie (account -> storage). 46 // 47 // Content wise the tuple either has 1 element if it addresses a node in a single 48 // trie or 2 elements if it addresses a node in a stacked trie. 49 // 50 // To support aiming arbitrary trie nodes, the path needs to support odd nibble 51 // lengths. To avoid transferring expanded hex form over the network, the last 52 // part of the tuple (which needs to index into the middle of a trie) is compact 53 // encoded. In case of a 2-tuple, the first item is always 32 bytes so that is 54 // simple binary encoded. 55 // 56 // Examples: 57 // - Path 0x9 -> {0x19} 58 // - Path 0x99 -> {0x0099} 59 // - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19} 60 // - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099} 61 type SyncPath [][]byte 62 63 // NewSyncPath converts an expanded trie path from nibble form into a compact 64 // version that can be sent over the network. 65 func NewSyncPath(path []byte) SyncPath { 66 // If the hash is from the account trie, append a single item, if it 67 // is from a storage trie, append a tuple. Note, the length 64 is 68 // clashing between account leaf and storage root. It's fine though 69 // because having a trie node at 64 depth means a hash collision was 70 // found and we're long dead. 71 if len(path) < 64 { 72 return SyncPath{hexToCompact(path)} 73 } 74 return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])} 75 } 76 77 // LeafCallback is a callback type invoked when a trie operation reaches a leaf 78 // node. 79 // 80 // The keys is a path tuple identifying a particular trie node either in a single 81 // trie (account) or a layered trie (account -> storage). Each key in the tuple 82 // is in the raw format(32 bytes). 83 // 84 // The path is a composite hexary path identifying the trie node. All the key 85 // bytes are converted to the hexary nibbles and composited with the parent path 86 // if the trie node is in a layered trie. 87 // 88 // It's used by state sync and commit to allow handling external references 89 // between account and storage tries. And also it's used in the state healing 90 // for extracting the raw states(leaf nodes) with corresponding paths. 91 type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error 92 93 // nodeRequest represents a scheduled or already in-flight trie node retrieval request. 94 type nodeRequest struct { 95 hash common.Hash // Hash of the trie node to retrieve 96 path []byte // Merkle path leading to this node for prioritization 97 data []byte // Data content of the node, cached until all subtrees complete 98 99 parent *nodeRequest // Parent state node referencing this entry 100 deps int // Number of dependencies before allowed to commit this node 101 callback LeafCallback // Callback to invoke if a leaf node it reached on this branch 102 } 103 104 // codeRequest represents a scheduled or already in-flight bytecode retrieval request. 105 type codeRequest struct { 106 hash common.Hash // Hash of the contract bytecode to retrieve 107 path []byte // Merkle path leading to this node for prioritization 108 data []byte // Data content of the node, cached until all subtrees complete 109 parents []*nodeRequest // Parent state nodes referencing this entry (notify all upon completion) 110 } 111 112 // NodeSyncResult is a response with requested trie node along with its node path. 113 type NodeSyncResult struct { 114 Path string // Path of the originally unknown trie node 115 Data []byte // Data content of the retrieved trie node 116 } 117 118 // CodeSyncResult is a response with requested bytecode along with its hash. 119 type CodeSyncResult struct { 120 Hash common.Hash // Hash the originally unknown bytecode 121 Data []byte // Data content of the retrieved bytecode 122 } 123 124 // syncMemBatch is an in-memory buffer of successfully downloaded but not yet 125 // persisted data items. 126 type syncMemBatch struct { 127 nodes map[string][]byte // In-memory membatch of recently completed nodes 128 hashes map[string]common.Hash // Hashes of recently completed nodes 129 codes map[common.Hash][]byte // In-memory membatch of recently completed codes 130 size uint64 // Estimated batch-size of in-memory data. 131 } 132 133 // newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes. 134 func newSyncMemBatch() *syncMemBatch { 135 return &syncMemBatch{ 136 nodes: make(map[string][]byte), 137 hashes: make(map[string]common.Hash), 138 codes: make(map[common.Hash][]byte), 139 } 140 } 141 142 // hasNode reports the trie node with specific path is already cached. 143 func (batch *syncMemBatch) hasNode(path []byte) bool { 144 _, ok := batch.nodes[string(path)] 145 return ok 146 } 147 148 // hasCode reports the contract code with specific hash is already cached. 149 func (batch *syncMemBatch) hasCode(hash common.Hash) bool { 150 _, ok := batch.codes[hash] 151 return ok 152 } 153 154 // Sync is the main state trie synchronisation scheduler, which provides yet 155 // unknown trie hashes to retrieve, accepts node data associated with said hashes 156 // and reconstructs the trie step by step until all is done. 157 type Sync struct { 158 scheme NodeScheme // Node scheme descriptor used in database. 159 database ethdb.KeyValueReader // Persistent database to check for existing entries 160 membatch *syncMemBatch // Memory buffer to avoid frequent database writes 161 nodeReqs map[string]*nodeRequest // Pending requests pertaining to a trie node path 162 codeReqs map[common.Hash]*codeRequest // Pending requests pertaining to a code hash 163 queue *prque.Prque // Priority queue with the pending requests 164 fetches map[int]int // Number of active fetches per trie node depth 165 } 166 167 // NewSync creates a new trie data download scheduler. 168 func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, scheme NodeScheme) *Sync { 169 ts := &Sync{ 170 scheme: scheme, 171 database: database, 172 membatch: newSyncMemBatch(), 173 nodeReqs: make(map[string]*nodeRequest), 174 codeReqs: make(map[common.Hash]*codeRequest), 175 queue: prque.New(nil), 176 fetches: make(map[int]int), 177 } 178 ts.AddSubTrie(root, nil, common.Hash{}, nil, callback) 179 return ts 180 } 181 182 // AddSubTrie registers a new trie to the sync code, rooted at the designated 183 // parent for completion tracking. The given path is a unique node path in 184 // hex format and contain all the parent path if it's layered trie node. 185 func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, parentPath []byte, callback LeafCallback) { 186 // Short circuit if the trie is empty or already known 187 if root == emptyRoot { 188 return 189 } 190 if s.membatch.hasNode(path) { 191 return 192 } 193 owner, inner := ResolvePath(path) 194 if s.scheme.HasTrieNode(s.database, owner, inner, root) { 195 return 196 } 197 // Assemble the new sub-trie sync request 198 req := &nodeRequest{ 199 hash: root, 200 path: path, 201 callback: callback, 202 } 203 // If this sub-trie has a designated parent, link them together 204 if parent != (common.Hash{}) { 205 ancestor := s.nodeReqs[string(parentPath)] 206 if ancestor == nil { 207 panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent)) 208 } 209 ancestor.deps++ 210 req.parent = ancestor 211 } 212 s.scheduleNodeRequest(req) 213 } 214 215 // AddCodeEntry schedules the direct retrieval of a contract code that should not 216 // be interpreted as a trie node, but rather accepted and stored into the database 217 // as is. 218 func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash, parentPath []byte) { 219 // Short circuit if the entry is empty or already known 220 if hash == emptyState { 221 return 222 } 223 if s.membatch.hasCode(hash) { 224 return 225 } 226 // If database says duplicate, the blob is present for sure. 227 // Note we only check the existence with new code scheme, snap 228 // sync is expected to run with a fresh new node. Even there 229 // exists the code with legacy format, fetch and store with 230 // new scheme anyway. 231 if rawdb.HasCodeWithPrefix(s.database, hash) { 232 return 233 } 234 // Assemble the new sub-trie sync request 235 req := &codeRequest{ 236 path: path, 237 hash: hash, 238 } 239 // If this sub-trie has a designated parent, link them together 240 if parent != (common.Hash{}) { 241 ancestor := s.nodeReqs[string(parentPath)] // the parent of codereq can ONLY be nodereq 242 if ancestor == nil { 243 panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent)) 244 } 245 ancestor.deps++ 246 req.parents = append(req.parents, ancestor) 247 } 248 s.scheduleCodeRequest(req) 249 } 250 251 // Missing retrieves the known missing nodes from the trie for retrieval. To aid 252 // both eth/6x style fast sync and snap/1x style state sync, the paths of trie 253 // nodes are returned too, as well as separate hash list for codes. 254 func (s *Sync) Missing(max int) ([]string, []common.Hash, []common.Hash) { 255 var ( 256 nodePaths []string 257 nodeHashes []common.Hash 258 codeHashes []common.Hash 259 ) 260 for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) { 261 // Retrieve the next item in line 262 item, prio := s.queue.Peek() 263 264 // If we have too many already-pending tasks for this depth, throttle 265 depth := int(prio >> 56) 266 if s.fetches[depth] > maxFetchesPerDepth { 267 break 268 } 269 // Item is allowed to be scheduled, add it to the task list 270 s.queue.Pop() 271 s.fetches[depth]++ 272 273 switch item := item.(type) { 274 case common.Hash: 275 codeHashes = append(codeHashes, item) 276 case string: 277 req, ok := s.nodeReqs[item] 278 if !ok { 279 log.Error("Missing node request", "path", item) 280 continue // System very wrong, shouldn't happen 281 } 282 nodePaths = append(nodePaths, item) 283 nodeHashes = append(nodeHashes, req.hash) 284 } 285 } 286 return nodePaths, nodeHashes, codeHashes 287 } 288 289 // ProcessCode injects the received data for requested item. Note it can 290 // happpen that the single response commits two pending requests(e.g. 291 // there are two requests one for code and one for node but the hash 292 // is same). In this case the second response for the same hash will 293 // be treated as "non-requested" item or "already-processed" item but 294 // there is no downside. 295 func (s *Sync) ProcessCode(result CodeSyncResult) error { 296 // If the code was not requested or it's already processed, bail out 297 req := s.codeReqs[result.Hash] 298 if req == nil { 299 return ErrNotRequested 300 } 301 if req.data != nil { 302 return ErrAlreadyProcessed 303 } 304 req.data = result.Data 305 return s.commitCodeRequest(req) 306 } 307 308 // ProcessNode injects the received data for requested item. Note it can 309 // happen that the single response commits two pending requests(e.g. 310 // there are two requests one for code and one for node but the hash 311 // is same). In this case the second response for the same hash will 312 // be treated as "non-requested" item or "already-processed" item but 313 // there is no downside. 314 func (s *Sync) ProcessNode(result NodeSyncResult) error { 315 // If the trie node was not requested or it's already processed, bail out 316 req := s.nodeReqs[result.Path] 317 if req == nil { 318 return ErrNotRequested 319 } 320 if req.data != nil { 321 return ErrAlreadyProcessed 322 } 323 // Decode the node data content and update the request 324 node, err := decodeNode(req.hash.Bytes(), result.Data) 325 if err != nil { 326 return err 327 } 328 req.data = result.Data 329 330 // Create and schedule a request for all the children nodes 331 requests, err := s.children(req, node) 332 if err != nil { 333 return err 334 } 335 if len(requests) == 0 && req.deps == 0 { 336 s.commitNodeRequest(req) 337 } else { 338 req.deps += len(requests) 339 for _, child := range requests { 340 s.scheduleNodeRequest(child) 341 } 342 } 343 return nil 344 } 345 346 // Commit flushes the data stored in the internal membatch out to persistent 347 // storage, returning any occurred error. 348 func (s *Sync) Commit(dbw ethdb.Batch) error { 349 // Dump the membatch into a database dbw 350 for path, value := range s.membatch.nodes { 351 owner, inner := ResolvePath([]byte(path)) 352 s.scheme.WriteTrieNode(dbw, owner, inner, s.membatch.hashes[path], value) 353 } 354 for hash, value := range s.membatch.codes { 355 rawdb.WriteCode(dbw, hash, value) 356 } 357 // Drop the membatch data and return 358 s.membatch = newSyncMemBatch() 359 return nil 360 } 361 362 // MemSize returns an estimated size (in bytes) of the data held in the membatch. 363 func (s *Sync) MemSize() uint64 { 364 return s.membatch.size 365 } 366 367 // Pending returns the number of state entries currently pending for download. 368 func (s *Sync) Pending() int { 369 return len(s.nodeReqs) + len(s.codeReqs) 370 } 371 372 // schedule inserts a new state retrieval request into the fetch queue. If there 373 // is already a pending request for this node, the new request will be discarded 374 // and only a parent reference added to the old one. 375 func (s *Sync) scheduleNodeRequest(req *nodeRequest) { 376 s.nodeReqs[string(req.path)] = req 377 378 // Schedule the request for future retrieval. This queue is shared 379 // by both node requests and code requests. 380 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 381 for i := 0; i < 14 && i < len(req.path); i++ { 382 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 383 } 384 s.queue.Push(string(req.path), prio) 385 } 386 387 // schedule inserts a new state retrieval request into the fetch queue. If there 388 // is already a pending request for this node, the new request will be discarded 389 // and only a parent reference added to the old one. 390 func (s *Sync) scheduleCodeRequest(req *codeRequest) { 391 // If we're already requesting this node, add a new reference and stop 392 if old, ok := s.codeReqs[req.hash]; ok { 393 old.parents = append(old.parents, req.parents...) 394 return 395 } 396 s.codeReqs[req.hash] = req 397 398 // Schedule the request for future retrieval. This queue is shared 399 // by both node requests and code requests. 400 prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents 401 for i := 0; i < 14 && i < len(req.path); i++ { 402 prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order 403 } 404 s.queue.Push(req.hash, prio) 405 } 406 407 // children retrieves all the missing children of a state trie entry for future 408 // retrieval scheduling. 409 func (s *Sync) children(req *nodeRequest, object node) ([]*nodeRequest, error) { 410 // Gather all the children of the node, irrelevant whether known or not 411 type childNode struct { 412 path []byte 413 node node 414 } 415 var children []childNode 416 417 switch node := (object).(type) { 418 case *shortNode: 419 key := node.Key 420 if hasTerm(key) { 421 key = key[:len(key)-1] 422 } 423 children = []childNode{{ 424 node: node.Val, 425 path: append(append([]byte(nil), req.path...), key...), 426 }} 427 case *fullNode: 428 for i := 0; i < 17; i++ { 429 if node.Children[i] != nil { 430 children = append(children, childNode{ 431 node: node.Children[i], 432 path: append(append([]byte(nil), req.path...), byte(i)), 433 }) 434 } 435 } 436 default: 437 panic(fmt.Sprintf("unknown node: %+v", node)) 438 } 439 // Iterate over the children, and request all unknown ones 440 var ( 441 missing = make(chan *nodeRequest, len(children)) 442 pending sync.WaitGroup 443 ) 444 for _, child := range children { 445 // Notify any external watcher of a new key/value node 446 if req.callback != nil { 447 if node, ok := (child.node).(valueNode); ok { 448 var paths [][]byte 449 if len(child.path) == 2*common.HashLength { 450 paths = append(paths, hexToKeybytes(child.path)) 451 } else if len(child.path) == 4*common.HashLength { 452 paths = append(paths, hexToKeybytes(child.path[:2*common.HashLength])) 453 paths = append(paths, hexToKeybytes(child.path[2*common.HashLength:])) 454 } 455 if err := req.callback(paths, child.path, node, req.hash, req.path); err != nil { 456 return nil, err 457 } 458 } 459 } 460 // If the child references another node, resolve or schedule 461 if node, ok := (child.node).(hashNode); ok { 462 // Try to resolve the node from the local database 463 if s.membatch.hasNode(child.path) { 464 continue 465 } 466 // Check the presence of children concurrently 467 pending.Add(1) 468 go func(child childNode) { 469 defer pending.Done() 470 471 // If database says duplicate, then at least the trie node is present 472 // and we hold the assumption that it's NOT legacy contract code. 473 var ( 474 chash = common.BytesToHash(node) 475 owner, inner = ResolvePath(child.path) 476 ) 477 if s.scheme.HasTrieNode(s.database, owner, inner, chash) { 478 return 479 } 480 // Locally unknown node, schedule for retrieval 481 missing <- &nodeRequest{ 482 path: child.path, 483 hash: chash, 484 parent: req, 485 callback: req.callback, 486 } 487 }(child) 488 } 489 } 490 pending.Wait() 491 492 requests := make([]*nodeRequest, 0, len(children)) 493 for done := false; !done; { 494 select { 495 case miss := <-missing: 496 requests = append(requests, miss) 497 default: 498 done = true 499 } 500 } 501 return requests, nil 502 } 503 504 // commit finalizes a retrieval request and stores it into the membatch. If any 505 // of the referencing parent requests complete due to this commit, they are also 506 // committed themselves. 507 func (s *Sync) commitNodeRequest(req *nodeRequest) error { 508 // Write the node content to the membatch 509 s.membatch.nodes[string(req.path)] = req.data 510 s.membatch.hashes[string(req.path)] = req.hash 511 // The size tracking refers to the db-batch, not the in-memory data. 512 // Therefore, we ignore the req.path, and account only for the hash+data 513 // which eventually is written to db. 514 s.membatch.size += common.HashLength + uint64(len(req.data)) 515 delete(s.nodeReqs, string(req.path)) 516 s.fetches[len(req.path)]-- 517 518 // Check parent for completion 519 if req.parent != nil { 520 req.parent.deps-- 521 if req.parent.deps == 0 { 522 if err := s.commitNodeRequest(req.parent); err != nil { 523 return err 524 } 525 } 526 } 527 return nil 528 } 529 530 // commit finalizes a retrieval request and stores it into the membatch. If any 531 // of the referencing parent requests complete due to this commit, they are also 532 // committed themselves. 533 func (s *Sync) commitCodeRequest(req *codeRequest) error { 534 // Write the node content to the membatch 535 s.membatch.codes[req.hash] = req.data 536 s.membatch.size += common.HashLength + uint64(len(req.data)) 537 delete(s.codeReqs, req.hash) 538 s.fetches[len(req.path)]-- 539 540 // Check all parents for completion 541 for _, parent := range req.parents { 542 parent.deps-- 543 if parent.deps == 0 { 544 if err := s.commitNodeRequest(parent); err != nil { 545 return err 546 } 547 } 548 } 549 return nil 550 } 551 552 // ResolvePath resolves the provided composite node path by separating the 553 // path in account trie if it's existent. 554 func ResolvePath(path []byte) (common.Hash, []byte) { 555 var owner common.Hash 556 if len(path) >= 2*common.HashLength { 557 owner = common.BytesToHash(hexToKeybytes(path[:2*common.HashLength])) 558 path = path[2*common.HashLength:] 559 } 560 return owner, path 561 }