github.com/jimmyx0x/go-ethereum@v1.10.28/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  
    25  	"github.com/ethereum/go-ethereum/common"
    26  	"github.com/ethereum/go-ethereum/crypto"
    27  	"github.com/ethereum/go-ethereum/log"
    28  )
    29  
    30  var (
    31  	// emptyRoot is the known root hash of an empty trie.
    32  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    33  
    34  	// emptyState is the known hash of an empty state trie entry.
    35  	emptyState = crypto.Keccak256Hash(nil)
    36  )
    37  
    38  // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on
    39  // top of a database. Whenever trie performs a commit operation, the generated
    40  // nodes will be gathered and returned in a set. Once the trie is committed,
    41  // it's not usable anymore. Callers have to re-create the trie with new root
    42  // based on the updated trie database.
    43  //
    44  // Trie is not safe for concurrent use.
    45  type Trie struct {
    46  	root  node
    47  	owner common.Hash
    48  
    49  	// Keep track of the number leaves which have been inserted since the last
    50  	// hashing operation. This number will not directly map to the number of
    51  	// actually unhashed nodes.
    52  	unhashed int
    53  
    54  	// reader is the handler trie can retrieve nodes from.
    55  	reader *trieReader
    56  
    57  	// tracer is the tool to track the trie changes.
    58  	// It will be reset after each commit operation.
    59  	tracer *tracer
    60  }
    61  
    62  // newFlag returns the cache flag value for a newly created node.
    63  func (t *Trie) newFlag() nodeFlag {
    64  	return nodeFlag{dirty: true}
    65  }
    66  
    67  // Copy returns a copy of Trie.
    68  func (t *Trie) Copy() *Trie {
    69  	return &Trie{
    70  		root:     t.root,
    71  		owner:    t.owner,
    72  		unhashed: t.unhashed,
    73  		reader:   t.reader,
    74  		tracer:   t.tracer.copy(),
    75  	}
    76  }
    77  
    78  // New creates the trie instance with provided trie id and the read-only
    79  // database. The state specified by trie id must be available, otherwise
    80  // an error will be returned. The trie root specified by trie id can be
    81  // zero hash or the sha3 hash of an empty string, then trie is initially
    82  // empty, otherwise, the root node must be present in database or returns
    83  // a MissingNodeError if not.
    84  func New(id *ID, db NodeReader) (*Trie, error) {
    85  	reader, err := newTrieReader(id.StateRoot, id.Owner, db)
    86  	if err != nil {
    87  		return nil, err
    88  	}
    89  	trie := &Trie{
    90  		owner:  id.Owner,
    91  		reader: reader,
    92  		//tracer: newTracer(),
    93  	}
    94  	if id.Root != (common.Hash{}) && id.Root != emptyRoot {
    95  		rootnode, err := trie.resolveAndTrack(id.Root[:], nil)
    96  		if err != nil {
    97  			return nil, err
    98  		}
    99  		trie.root = rootnode
   100  	}
   101  	return trie, nil
   102  }
   103  
   104  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
   105  func NewEmpty(db *Database) *Trie {
   106  	tr, _ := New(TrieID(common.Hash{}), db)
   107  	return tr
   108  }
   109  
   110  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   111  // the key after the given start key.
   112  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   113  	return newNodeIterator(t, start)
   114  }
   115  
   116  // Get returns the value for key stored in the trie.
   117  // The value bytes must not be modified by the caller.
   118  func (t *Trie) Get(key []byte) []byte {
   119  	res, err := t.TryGet(key)
   120  	if err != nil {
   121  		log.Error("Unhandled trie error in Trie.Get", "err", err)
   122  	}
   123  	return res
   124  }
   125  
   126  // TryGet returns the value for key stored in the trie.
   127  // The value bytes must not be modified by the caller.
   128  // If a node was not found in the database, a MissingNodeError is returned.
   129  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   130  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   131  	if err == nil && didResolve {
   132  		t.root = newroot
   133  	}
   134  	return value, err
   135  }
   136  
   137  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   138  	switch n := (origNode).(type) {
   139  	case nil:
   140  		return nil, nil, false, nil
   141  	case valueNode:
   142  		return n, n, false, nil
   143  	case *shortNode:
   144  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   145  			// key not found in trie
   146  			return nil, n, false, nil
   147  		}
   148  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   149  		if err == nil && didResolve {
   150  			n = n.copy()
   151  			n.Val = newnode
   152  		}
   153  		return value, n, didResolve, err
   154  	case *fullNode:
   155  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   156  		if err == nil && didResolve {
   157  			n = n.copy()
   158  			n.Children[key[pos]] = newnode
   159  		}
   160  		return value, n, didResolve, err
   161  	case hashNode:
   162  		child, err := t.resolveAndTrack(n, key[:pos])
   163  		if err != nil {
   164  			return nil, n, true, err
   165  		}
   166  		value, newnode, _, err := t.tryGet(child, key, pos)
   167  		return value, newnode, true, err
   168  	default:
   169  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   170  	}
   171  }
   172  
   173  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   174  // possible to use keybyte-encoding as the path might contain odd nibbles.
   175  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   176  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   177  	if err != nil {
   178  		return nil, resolved, err
   179  	}
   180  	if resolved > 0 {
   181  		t.root = newroot
   182  	}
   183  	if item == nil {
   184  		return nil, resolved, nil
   185  	}
   186  	return item, resolved, err
   187  }
   188  
   189  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   190  	// If non-existent path requested, abort
   191  	if origNode == nil {
   192  		return nil, nil, 0, nil
   193  	}
   194  	// If we reached the requested path, return the current node
   195  	if pos >= len(path) {
   196  		// Although we most probably have the original node expanded, encoding
   197  		// that into consensus form can be nasty (needs to cascade down) and
   198  		// time consuming. Instead, just pull the hash up from disk directly.
   199  		var hash hashNode
   200  		if node, ok := origNode.(hashNode); ok {
   201  			hash = node
   202  		} else {
   203  			hash, _ = origNode.cache()
   204  		}
   205  		if hash == nil {
   206  			return nil, origNode, 0, errors.New("non-consensus node")
   207  		}
   208  		blob, err := t.reader.nodeBlob(path, common.BytesToHash(hash))
   209  		return blob, origNode, 1, err
   210  	}
   211  	// Path still needs to be traversed, descend into children
   212  	switch n := (origNode).(type) {
   213  	case valueNode:
   214  		// Path prematurely ended, abort
   215  		return nil, nil, 0, nil
   216  
   217  	case *shortNode:
   218  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   219  			// Path branches off from short node
   220  			return nil, n, 0, nil
   221  		}
   222  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   223  		if err == nil && resolved > 0 {
   224  			n = n.copy()
   225  			n.Val = newnode
   226  		}
   227  		return item, n, resolved, err
   228  
   229  	case *fullNode:
   230  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   231  		if err == nil && resolved > 0 {
   232  			n = n.copy()
   233  			n.Children[path[pos]] = newnode
   234  		}
   235  		return item, n, resolved, err
   236  
   237  	case hashNode:
   238  		child, err := t.resolveAndTrack(n, path[:pos])
   239  		if err != nil {
   240  			return nil, n, 1, err
   241  		}
   242  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   243  		return item, newnode, resolved + 1, err
   244  
   245  	default:
   246  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   247  	}
   248  }
   249  
   250  // Update associates key with value in the trie. Subsequent calls to
   251  // Get will return value. If value has length zero, any existing value
   252  // is deleted from the trie and calls to Get will return nil.
   253  //
   254  // The value bytes must not be modified by the caller while they are
   255  // stored in the trie.
   256  func (t *Trie) Update(key, value []byte) {
   257  	if err := t.TryUpdate(key, value); err != nil {
   258  		log.Error("Unhandled trie error in Trie.Update", "err", err)
   259  	}
   260  }
   261  
   262  // TryUpdate associates key with value in the trie. Subsequent calls to
   263  // Get will return value. If value has length zero, any existing value
   264  // is deleted from the trie and calls to Get will return nil.
   265  //
   266  // The value bytes must not be modified by the caller while they are
   267  // stored in the trie.
   268  //
   269  // If a node was not found in the database, a MissingNodeError is returned.
   270  func (t *Trie) TryUpdate(key, value []byte) error {
   271  	return t.tryUpdate(key, value)
   272  }
   273  
   274  // tryUpdate expects an RLP-encoded value and performs the core function
   275  // for TryUpdate and TryUpdateAccount.
   276  func (t *Trie) tryUpdate(key, value []byte) error {
   277  	t.unhashed++
   278  	k := keybytesToHex(key)
   279  	if len(value) != 0 {
   280  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   281  		if err != nil {
   282  			return err
   283  		}
   284  		t.root = n
   285  	} else {
   286  		_, n, err := t.delete(t.root, nil, k)
   287  		if err != nil {
   288  			return err
   289  		}
   290  		t.root = n
   291  	}
   292  	return nil
   293  }
   294  
   295  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   296  	if len(key) == 0 {
   297  		if v, ok := n.(valueNode); ok {
   298  			return !bytes.Equal(v, value.(valueNode)), value, nil
   299  		}
   300  		return true, value, nil
   301  	}
   302  	switch n := n.(type) {
   303  	case *shortNode:
   304  		matchlen := prefixLen(key, n.Key)
   305  		// If the whole key matches, keep this short node as is
   306  		// and only update the value.
   307  		if matchlen == len(n.Key) {
   308  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   309  			if !dirty || err != nil {
   310  				return false, n, err
   311  			}
   312  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   313  		}
   314  		// Otherwise branch out at the index where they differ.
   315  		branch := &fullNode{flags: t.newFlag()}
   316  		var err error
   317  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   318  		if err != nil {
   319  			return false, nil, err
   320  		}
   321  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   322  		if err != nil {
   323  			return false, nil, err
   324  		}
   325  		// Replace this shortNode with the branch if it occurs at index 0.
   326  		if matchlen == 0 {
   327  			return true, branch, nil
   328  		}
   329  		// New branch node is created as a child of the original short node.
   330  		// Track the newly inserted node in the tracer. The node identifier
   331  		// passed is the path from the root node.
   332  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   333  
   334  		// Replace it with a short node leading up to the branch.
   335  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   336  
   337  	case *fullNode:
   338  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   339  		if !dirty || err != nil {
   340  			return false, n, err
   341  		}
   342  		n = n.copy()
   343  		n.flags = t.newFlag()
   344  		n.Children[key[0]] = nn
   345  		return true, n, nil
   346  
   347  	case nil:
   348  		// New short node is created and track it in the tracer. The node identifier
   349  		// passed is the path from the root node. Note the valueNode won't be tracked
   350  		// since it's always embedded in its parent.
   351  		t.tracer.onInsert(prefix)
   352  
   353  		return true, &shortNode{key, value, t.newFlag()}, nil
   354  
   355  	case hashNode:
   356  		// We've hit a part of the trie that isn't loaded yet. Load
   357  		// the node and insert into it. This leaves all child nodes on
   358  		// the path to the value in the trie.
   359  		rn, err := t.resolveAndTrack(n, prefix)
   360  		if err != nil {
   361  			return false, nil, err
   362  		}
   363  		dirty, nn, err := t.insert(rn, prefix, key, value)
   364  		if !dirty || err != nil {
   365  			return false, rn, err
   366  		}
   367  		return true, nn, nil
   368  
   369  	default:
   370  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   371  	}
   372  }
   373  
   374  // Delete removes any existing value for key from the trie.
   375  func (t *Trie) Delete(key []byte) {
   376  	if err := t.TryDelete(key); err != nil {
   377  		log.Error("Unhandled trie error in Trie.Delete", "err", err)
   378  	}
   379  }
   380  
   381  // TryDelete removes any existing value for key from the trie.
   382  // If a node was not found in the database, a MissingNodeError is returned.
   383  func (t *Trie) TryDelete(key []byte) error {
   384  	t.unhashed++
   385  	k := keybytesToHex(key)
   386  	_, n, err := t.delete(t.root, nil, k)
   387  	if err != nil {
   388  		return err
   389  	}
   390  	t.root = n
   391  	return nil
   392  }
   393  
   394  // delete returns the new root of the trie with key deleted.
   395  // It reduces the trie to minimal form by simplifying
   396  // nodes on the way up after deleting recursively.
   397  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   398  	switch n := n.(type) {
   399  	case *shortNode:
   400  		matchlen := prefixLen(key, n.Key)
   401  		if matchlen < len(n.Key) {
   402  			return false, n, nil // don't replace n on mismatch
   403  		}
   404  		if matchlen == len(key) {
   405  			// The matched short node is deleted entirely and track
   406  			// it in the deletion set. The same the valueNode doesn't
   407  			// need to be tracked at all since it's always embedded.
   408  			t.tracer.onDelete(prefix)
   409  
   410  			return true, nil, nil // remove n entirely for whole matches
   411  		}
   412  		// The key is longer than n.Key. Remove the remaining suffix
   413  		// from the subtrie. Child can never be nil here since the
   414  		// subtrie must contain at least two other values with keys
   415  		// longer than n.Key.
   416  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   417  		if !dirty || err != nil {
   418  			return false, n, err
   419  		}
   420  		switch child := child.(type) {
   421  		case *shortNode:
   422  			// The child shortNode is merged into its parent, track
   423  			// is deleted as well.
   424  			t.tracer.onDelete(append(prefix, n.Key...))
   425  
   426  			// Deleting from the subtrie reduced it to another
   427  			// short node. Merge the nodes to avoid creating a
   428  			// shortNode{..., shortNode{...}}. Use concat (which
   429  			// always creates a new slice) instead of append to
   430  			// avoid modifying n.Key since it might be shared with
   431  			// other nodes.
   432  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   433  		default:
   434  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   435  		}
   436  
   437  	case *fullNode:
   438  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   439  		if !dirty || err != nil {
   440  			return false, n, err
   441  		}
   442  		n = n.copy()
   443  		n.flags = t.newFlag()
   444  		n.Children[key[0]] = nn
   445  
   446  		// Because n is a full node, it must've contained at least two children
   447  		// before the delete operation. If the new child value is non-nil, n still
   448  		// has at least two children after the deletion, and cannot be reduced to
   449  		// a short node.
   450  		if nn != nil {
   451  			return true, n, nil
   452  		}
   453  		// Reduction:
   454  		// Check how many non-nil entries are left after deleting and
   455  		// reduce the full node to a short node if only one entry is
   456  		// left. Since n must've contained at least two children
   457  		// before deletion (otherwise it would not be a full node) n
   458  		// can never be reduced to nil.
   459  		//
   460  		// When the loop is done, pos contains the index of the single
   461  		// value that is left in n or -2 if n contains at least two
   462  		// values.
   463  		pos := -1
   464  		for i, cld := range &n.Children {
   465  			if cld != nil {
   466  				if pos == -1 {
   467  					pos = i
   468  				} else {
   469  					pos = -2
   470  					break
   471  				}
   472  			}
   473  		}
   474  		if pos >= 0 {
   475  			if pos != 16 {
   476  				// If the remaining entry is a short node, it replaces
   477  				// n and its key gets the missing nibble tacked to the
   478  				// front. This avoids creating an invalid
   479  				// shortNode{..., shortNode{...}}.  Since the entry
   480  				// might not be loaded yet, resolve it just for this
   481  				// check.
   482  				cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos)))
   483  				if err != nil {
   484  					return false, nil, err
   485  				}
   486  				if cnode, ok := cnode.(*shortNode); ok {
   487  					// Replace the entire full node with the short node.
   488  					// Mark the original short node as deleted since the
   489  					// value is embedded into the parent now.
   490  					t.tracer.onDelete(append(prefix, byte(pos)))
   491  
   492  					k := append([]byte{byte(pos)}, cnode.Key...)
   493  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   494  				}
   495  			}
   496  			// Otherwise, n is replaced by a one-nibble short node
   497  			// containing the child.
   498  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   499  		}
   500  		// n still contains at least two values and cannot be reduced.
   501  		return true, n, nil
   502  
   503  	case valueNode:
   504  		return true, nil, nil
   505  
   506  	case nil:
   507  		return false, nil, nil
   508  
   509  	case hashNode:
   510  		// We've hit a part of the trie that isn't loaded yet. Load
   511  		// the node and delete from it. This leaves all child nodes on
   512  		// the path to the value in the trie.
   513  		rn, err := t.resolveAndTrack(n, prefix)
   514  		if err != nil {
   515  			return false, nil, err
   516  		}
   517  		dirty, nn, err := t.delete(rn, prefix, key)
   518  		if !dirty || err != nil {
   519  			return false, rn, err
   520  		}
   521  		return true, nn, nil
   522  
   523  	default:
   524  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   525  	}
   526  }
   527  
   528  func concat(s1 []byte, s2 ...byte) []byte {
   529  	r := make([]byte, len(s1)+len(s2))
   530  	copy(r, s1)
   531  	copy(r[len(s1):], s2)
   532  	return r
   533  }
   534  
   535  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   536  	if n, ok := n.(hashNode); ok {
   537  		return t.resolveAndTrack(n, prefix)
   538  	}
   539  	return n, nil
   540  }
   541  
   542  // resolveAndTrack loads node from the underlying store with the given node hash
   543  // and path prefix and also tracks the loaded node blob in tracer treated as the
   544  // node's original value. The rlp-encoded blob is preferred to be loaded from
   545  // database because it's easy to decode node while complex to encode node to blob.
   546  func (t *Trie) resolveAndTrack(n hashNode, prefix []byte) (node, error) {
   547  	blob, err := t.reader.nodeBlob(prefix, common.BytesToHash(n))
   548  	if err != nil {
   549  		return nil, err
   550  	}
   551  	t.tracer.onRead(prefix, blob)
   552  	return mustDecodeNode(n, blob), nil
   553  }
   554  
   555  // Hash returns the root hash of the trie. It does not write to the
   556  // database and can be used even if the trie doesn't have one.
   557  func (t *Trie) Hash() common.Hash {
   558  	hash, cached, _ := t.hashRoot()
   559  	t.root = cached
   560  	return common.BytesToHash(hash.(hashNode))
   561  }
   562  
   563  // Commit collects all dirty nodes in the trie and replaces them with the
   564  // corresponding node hash. All collected nodes (including dirty leaves if
   565  // collectLeaf is true) will be encapsulated into a nodeset for return.
   566  // The returned nodeset can be nil if the trie is clean (nothing to commit).
   567  // Once the trie is committed, it's not usable anymore. A new trie must
   568  // be created with new root and updated trie database for following usage
   569  func (t *Trie) Commit(collectLeaf bool) (common.Hash, *NodeSet, error) {
   570  	defer t.tracer.reset()
   571  
   572  	// Trie is empty and can be classified into two types of situations:
   573  	// - The trie was empty and no update happens
   574  	// - The trie was non-empty and all nodes are dropped
   575  	if t.root == nil {
   576  		// Wrap tracked deletions as the return
   577  		set := NewNodeSet(t.owner)
   578  		t.tracer.markDeletions(set)
   579  		return emptyRoot, set, nil
   580  	}
   581  	// Derive the hash for all dirty nodes first. We hold the assumption
   582  	// in the following procedure that all nodes are hashed.
   583  	rootHash := t.Hash()
   584  
   585  	// Do a quick check if we really need to commit. This can happen e.g.
   586  	// if we load a trie for reading storage values, but don't write to it.
   587  	if hashedNode, dirty := t.root.cache(); !dirty {
   588  		// Replace the root node with the origin hash in order to
   589  		// ensure all resolved nodes are dropped after the commit.
   590  		t.root = hashedNode
   591  		return rootHash, nil, nil
   592  	}
   593  	h := newCommitter(t.owner, t.tracer, collectLeaf)
   594  	newRoot, nodes, err := h.Commit(t.root)
   595  	if err != nil {
   596  		return common.Hash{}, nil, err
   597  	}
   598  	t.root = newRoot
   599  	return rootHash, nodes, nil
   600  }
   601  
   602  // hashRoot calculates the root hash of the given trie
   603  func (t *Trie) hashRoot() (node, node, error) {
   604  	if t.root == nil {
   605  		return hashNode(emptyRoot.Bytes()), nil, nil
   606  	}
   607  	// If the number of changes is below 100, we let one thread handle it
   608  	h := newHasher(t.unhashed >= 100)
   609  	defer returnHasherToPool(h)
   610  	hashed, cached := h.hash(t.root, true)
   611  	t.unhashed = 0
   612  	return hashed, cached, nil
   613  }
   614  
   615  // Reset drops the referenced root node and cleans all internal state.
   616  func (t *Trie) Reset() {
   617  	t.root = nil
   618  	t.owner = common.Hash{}
   619  	t.unhashed = 0
   620  	t.tracer.reset()
   621  }