github.com/jimmyx0x/go-ethereum@v1.10.28/trie/trie_test.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "bytes" 21 "encoding/binary" 22 "errors" 23 "fmt" 24 "hash" 25 "math/big" 26 "math/rand" 27 "reflect" 28 "testing" 29 "testing/quick" 30 31 "github.com/davecgh/go-spew/spew" 32 "github.com/ethereum/go-ethereum/common" 33 "github.com/ethereum/go-ethereum/core/rawdb" 34 "github.com/ethereum/go-ethereum/core/types" 35 "github.com/ethereum/go-ethereum/crypto" 36 "github.com/ethereum/go-ethereum/ethdb" 37 "github.com/ethereum/go-ethereum/rlp" 38 "golang.org/x/crypto/sha3" 39 ) 40 41 func init() { 42 spew.Config.Indent = " " 43 spew.Config.DisableMethods = false 44 } 45 46 func TestEmptyTrie(t *testing.T) { 47 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 48 res := trie.Hash() 49 exp := emptyRoot 50 if res != exp { 51 t.Errorf("expected %x got %x", exp, res) 52 } 53 } 54 55 func TestNull(t *testing.T) { 56 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 57 key := make([]byte, 32) 58 value := []byte("test") 59 trie.Update(key, value) 60 if !bytes.Equal(trie.Get(key), value) { 61 t.Fatal("wrong value") 62 } 63 } 64 65 func TestMissingRoot(t *testing.T) { 66 root := common.HexToHash("0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33") 67 trie, err := New(TrieID(root), NewDatabase(rawdb.NewMemoryDatabase())) 68 if trie != nil { 69 t.Error("New returned non-nil trie for invalid root") 70 } 71 if _, ok := err.(*MissingNodeError); !ok { 72 t.Errorf("New returned wrong error: %v", err) 73 } 74 } 75 76 func TestMissingNodeDisk(t *testing.T) { testMissingNode(t, false) } 77 func TestMissingNodeMemonly(t *testing.T) { testMissingNode(t, true) } 78 79 func testMissingNode(t *testing.T, memonly bool) { 80 diskdb := rawdb.NewMemoryDatabase() 81 triedb := NewDatabase(diskdb) 82 83 trie := NewEmpty(triedb) 84 updateString(trie, "120000", "qwerqwerqwerqwerqwerqwerqwerqwer") 85 updateString(trie, "123456", "asdfasdfasdfasdfasdfasdfasdfasdf") 86 root, nodes, _ := trie.Commit(false) 87 triedb.Update(NewWithNodeSet(nodes)) 88 if !memonly { 89 triedb.Commit(root, true, nil) 90 } 91 92 trie, _ = New(TrieID(root), triedb) 93 _, err := trie.TryGet([]byte("120000")) 94 if err != nil { 95 t.Errorf("Unexpected error: %v", err) 96 } 97 trie, _ = New(TrieID(root), triedb) 98 _, err = trie.TryGet([]byte("120099")) 99 if err != nil { 100 t.Errorf("Unexpected error: %v", err) 101 } 102 trie, _ = New(TrieID(root), triedb) 103 _, err = trie.TryGet([]byte("123456")) 104 if err != nil { 105 t.Errorf("Unexpected error: %v", err) 106 } 107 trie, _ = New(TrieID(root), triedb) 108 err = trie.TryUpdate([]byte("120099"), []byte("zxcvzxcvzxcvzxcvzxcvzxcvzxcvzxcv")) 109 if err != nil { 110 t.Errorf("Unexpected error: %v", err) 111 } 112 trie, _ = New(TrieID(root), triedb) 113 err = trie.TryDelete([]byte("123456")) 114 if err != nil { 115 t.Errorf("Unexpected error: %v", err) 116 } 117 118 hash := common.HexToHash("0xe1d943cc8f061a0c0b98162830b970395ac9315654824bf21b73b891365262f9") 119 if memonly { 120 delete(triedb.dirties, hash) 121 } else { 122 diskdb.Delete(hash[:]) 123 } 124 125 trie, _ = New(TrieID(root), triedb) 126 _, err = trie.TryGet([]byte("120000")) 127 if _, ok := err.(*MissingNodeError); !ok { 128 t.Errorf("Wrong error: %v", err) 129 } 130 trie, _ = New(TrieID(root), triedb) 131 _, err = trie.TryGet([]byte("120099")) 132 if _, ok := err.(*MissingNodeError); !ok { 133 t.Errorf("Wrong error: %v", err) 134 } 135 trie, _ = New(TrieID(root), triedb) 136 _, err = trie.TryGet([]byte("123456")) 137 if err != nil { 138 t.Errorf("Unexpected error: %v", err) 139 } 140 trie, _ = New(TrieID(root), triedb) 141 err = trie.TryUpdate([]byte("120099"), []byte("zxcv")) 142 if _, ok := err.(*MissingNodeError); !ok { 143 t.Errorf("Wrong error: %v", err) 144 } 145 trie, _ = New(TrieID(root), triedb) 146 err = trie.TryDelete([]byte("123456")) 147 if _, ok := err.(*MissingNodeError); !ok { 148 t.Errorf("Wrong error: %v", err) 149 } 150 } 151 152 func TestInsert(t *testing.T) { 153 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 154 155 updateString(trie, "doe", "reindeer") 156 updateString(trie, "dog", "puppy") 157 updateString(trie, "dogglesworth", "cat") 158 159 exp := common.HexToHash("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3") 160 root := trie.Hash() 161 if root != exp { 162 t.Errorf("case 1: exp %x got %x", exp, root) 163 } 164 165 trie = NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 166 updateString(trie, "A", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") 167 168 exp = common.HexToHash("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab") 169 root, _, err := trie.Commit(false) 170 if err != nil { 171 t.Fatalf("commit error: %v", err) 172 } 173 if root != exp { 174 t.Errorf("case 2: exp %x got %x", exp, root) 175 } 176 } 177 178 func TestGet(t *testing.T) { 179 db := NewDatabase(rawdb.NewMemoryDatabase()) 180 trie := NewEmpty(db) 181 updateString(trie, "doe", "reindeer") 182 updateString(trie, "dog", "puppy") 183 updateString(trie, "dogglesworth", "cat") 184 185 for i := 0; i < 2; i++ { 186 res := getString(trie, "dog") 187 if !bytes.Equal(res, []byte("puppy")) { 188 t.Errorf("expected puppy got %x", res) 189 } 190 unknown := getString(trie, "unknown") 191 if unknown != nil { 192 t.Errorf("expected nil got %x", unknown) 193 } 194 if i == 1 { 195 return 196 } 197 root, nodes, _ := trie.Commit(false) 198 db.Update(NewWithNodeSet(nodes)) 199 trie, _ = New(TrieID(root), db) 200 } 201 } 202 203 func TestDelete(t *testing.T) { 204 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 205 vals := []struct{ k, v string }{ 206 {"do", "verb"}, 207 {"ether", "wookiedoo"}, 208 {"horse", "stallion"}, 209 {"shaman", "horse"}, 210 {"doge", "coin"}, 211 {"ether", ""}, 212 {"dog", "puppy"}, 213 {"shaman", ""}, 214 } 215 for _, val := range vals { 216 if val.v != "" { 217 updateString(trie, val.k, val.v) 218 } else { 219 deleteString(trie, val.k) 220 } 221 } 222 223 hash := trie.Hash() 224 exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84") 225 if hash != exp { 226 t.Errorf("expected %x got %x", exp, hash) 227 } 228 } 229 230 func TestEmptyValues(t *testing.T) { 231 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 232 233 vals := []struct{ k, v string }{ 234 {"do", "verb"}, 235 {"ether", "wookiedoo"}, 236 {"horse", "stallion"}, 237 {"shaman", "horse"}, 238 {"doge", "coin"}, 239 {"ether", ""}, 240 {"dog", "puppy"}, 241 {"shaman", ""}, 242 } 243 for _, val := range vals { 244 updateString(trie, val.k, val.v) 245 } 246 247 hash := trie.Hash() 248 exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84") 249 if hash != exp { 250 t.Errorf("expected %x got %x", exp, hash) 251 } 252 } 253 254 func TestReplication(t *testing.T) { 255 triedb := NewDatabase(rawdb.NewMemoryDatabase()) 256 trie := NewEmpty(triedb) 257 vals := []struct{ k, v string }{ 258 {"do", "verb"}, 259 {"ether", "wookiedoo"}, 260 {"horse", "stallion"}, 261 {"shaman", "horse"}, 262 {"doge", "coin"}, 263 {"dog", "puppy"}, 264 {"somethingveryoddindeedthis is", "myothernodedata"}, 265 } 266 for _, val := range vals { 267 updateString(trie, val.k, val.v) 268 } 269 exp, nodes, err := trie.Commit(false) 270 if err != nil { 271 t.Fatalf("commit error: %v", err) 272 } 273 triedb.Update(NewWithNodeSet(nodes)) 274 275 // create a new trie on top of the database and check that lookups work. 276 trie2, err := New(TrieID(exp), triedb) 277 if err != nil { 278 t.Fatalf("can't recreate trie at %x: %v", exp, err) 279 } 280 for _, kv := range vals { 281 if string(getString(trie2, kv.k)) != kv.v { 282 t.Errorf("trie2 doesn't have %q => %q", kv.k, kv.v) 283 } 284 } 285 hash, nodes, err := trie2.Commit(false) 286 if err != nil { 287 t.Fatalf("commit error: %v", err) 288 } 289 if hash != exp { 290 t.Errorf("root failure. expected %x got %x", exp, hash) 291 } 292 293 // recreate the trie after commit 294 if nodes != nil { 295 triedb.Update(NewWithNodeSet(nodes)) 296 } 297 trie2, err = New(TrieID(hash), triedb) 298 if err != nil { 299 t.Fatalf("can't recreate trie at %x: %v", exp, err) 300 } 301 // perform some insertions on the new trie. 302 vals2 := []struct{ k, v string }{ 303 {"do", "verb"}, 304 {"ether", "wookiedoo"}, 305 {"horse", "stallion"}, 306 // {"shaman", "horse"}, 307 // {"doge", "coin"}, 308 // {"ether", ""}, 309 // {"dog", "puppy"}, 310 // {"somethingveryoddindeedthis is", "myothernodedata"}, 311 // {"shaman", ""}, 312 } 313 for _, val := range vals2 { 314 updateString(trie2, val.k, val.v) 315 } 316 if hash := trie2.Hash(); hash != exp { 317 t.Errorf("root failure. expected %x got %x", exp, hash) 318 } 319 } 320 321 func TestLargeValue(t *testing.T) { 322 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 323 trie.Update([]byte("key1"), []byte{99, 99, 99, 99}) 324 trie.Update([]byte("key2"), bytes.Repeat([]byte{1}, 32)) 325 trie.Hash() 326 } 327 328 // TestRandomCases tests som cases that were found via random fuzzing 329 func TestRandomCases(t *testing.T) { 330 var rt = []randTestStep{ 331 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 0 332 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 1 333 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000002")}, // step 2 334 {op: 2, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 3 335 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 4 336 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 5 337 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 6 338 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 7 339 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000008")}, // step 8 340 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000009")}, // step 9 341 {op: 2, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 10 342 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 11 343 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 12 344 {op: 0, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("000000000000000d")}, // step 13 345 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 14 346 {op: 1, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 15 347 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 16 348 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000011")}, // step 17 349 {op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 18 350 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 19 351 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000014")}, // step 20 352 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000015")}, // step 21 353 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000016")}, // step 22 354 {op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 23 355 {op: 1, key: common.Hex2Bytes("980c393656413a15c8da01978ed9f89feb80b502f58f2d640e3a2f5f7a99a7018f1b573befd92053ac6f78fca4a87268"), value: common.Hex2Bytes("")}, // step 24 356 {op: 1, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 25 357 } 358 runRandTest(rt) 359 } 360 361 // randTest performs random trie operations. 362 // Instances of this test are created by Generate. 363 type randTest []randTestStep 364 365 type randTestStep struct { 366 op int 367 key []byte // for opUpdate, opDelete, opGet 368 value []byte // for opUpdate 369 err error // for debugging 370 } 371 372 const ( 373 opUpdate = iota 374 opDelete 375 opGet 376 opHash 377 opCommit 378 opItercheckhash 379 opNodeDiff 380 opProve 381 opMax // boundary value, not an actual op 382 ) 383 384 func (randTest) Generate(r *rand.Rand, size int) reflect.Value { 385 var allKeys [][]byte 386 genKey := func() []byte { 387 if len(allKeys) < 2 || r.Intn(100) < 10 { 388 // new key 389 key := make([]byte, r.Intn(50)) 390 r.Read(key) 391 allKeys = append(allKeys, key) 392 return key 393 } 394 // use existing key 395 return allKeys[r.Intn(len(allKeys))] 396 } 397 398 var steps randTest 399 for i := 0; i < size; i++ { 400 step := randTestStep{op: r.Intn(opMax)} 401 switch step.op { 402 case opUpdate: 403 step.key = genKey() 404 step.value = make([]byte, 8) 405 binary.BigEndian.PutUint64(step.value, uint64(i)) 406 case opGet, opDelete, opProve: 407 step.key = genKey() 408 } 409 steps = append(steps, step) 410 } 411 return reflect.ValueOf(steps) 412 } 413 414 func runRandTest(rt randTest) bool { 415 var ( 416 triedb = NewDatabase(rawdb.NewMemoryDatabase()) 417 tr = NewEmpty(triedb) 418 values = make(map[string]string) // tracks content of the trie 419 origTrie = NewEmpty(triedb) 420 ) 421 tr.tracer = newTracer() 422 423 for i, step := range rt { 424 // fmt.Printf("{op: %d, key: common.Hex2Bytes(\"%x\"), value: common.Hex2Bytes(\"%x\")}, // step %d\n", 425 // step.op, step.key, step.value, i) 426 427 switch step.op { 428 case opUpdate: 429 tr.Update(step.key, step.value) 430 values[string(step.key)] = string(step.value) 431 case opDelete: 432 tr.Delete(step.key) 433 delete(values, string(step.key)) 434 case opGet: 435 v := tr.Get(step.key) 436 want := values[string(step.key)] 437 if string(v) != want { 438 rt[i].err = fmt.Errorf("mismatch for key %#x, got %#x want %#x", step.key, v, want) 439 } 440 case opProve: 441 hash := tr.Hash() 442 if hash == emptyRoot { 443 continue 444 } 445 proofDb := rawdb.NewMemoryDatabase() 446 err := tr.Prove(step.key, 0, proofDb) 447 if err != nil { 448 rt[i].err = fmt.Errorf("failed for proving key %#x, %v", step.key, err) 449 } 450 _, err = VerifyProof(hash, step.key, proofDb) 451 if err != nil { 452 rt[i].err = fmt.Errorf("failed for verifying key %#x, %v", step.key, err) 453 } 454 case opHash: 455 tr.Hash() 456 case opCommit: 457 root, nodes, err := tr.Commit(true) 458 if err != nil { 459 rt[i].err = err 460 return false 461 } 462 // Validity the returned nodeset 463 if nodes != nil { 464 for path, node := range nodes.updates.nodes { 465 blob, _, _ := origTrie.TryGetNode(hexToCompact([]byte(path))) 466 got := node.prev 467 if !bytes.Equal(blob, got) { 468 rt[i].err = fmt.Errorf("prevalue mismatch for 0x%x, got 0x%x want 0x%x", path, got, blob) 469 panic(rt[i].err) 470 } 471 } 472 for path, prev := range nodes.deletes { 473 blob, _, _ := origTrie.TryGetNode(hexToCompact([]byte(path))) 474 if !bytes.Equal(blob, prev) { 475 rt[i].err = fmt.Errorf("prevalue mismatch for 0x%x, got 0x%x want 0x%x", path, prev, blob) 476 return false 477 } 478 } 479 } 480 if nodes != nil { 481 triedb.Update(NewWithNodeSet(nodes)) 482 } 483 newtr, err := New(TrieID(root), triedb) 484 if err != nil { 485 rt[i].err = err 486 return false 487 } 488 tr = newtr 489 490 // Enable node tracing. Resolve the root node again explicitly 491 // since it's not captured at the beginning. 492 tr.tracer = newTracer() 493 tr.resolveAndTrack(root.Bytes(), nil) 494 495 origTrie = tr.Copy() 496 case opItercheckhash: 497 checktr := NewEmpty(triedb) 498 it := NewIterator(tr.NodeIterator(nil)) 499 for it.Next() { 500 checktr.Update(it.Key, it.Value) 501 } 502 if tr.Hash() != checktr.Hash() { 503 rt[i].err = fmt.Errorf("hash mismatch in opItercheckhash") 504 } 505 case opNodeDiff: 506 var ( 507 inserted = tr.tracer.insertList() 508 deleted = tr.tracer.deleteList() 509 origIter = origTrie.NodeIterator(nil) 510 curIter = tr.NodeIterator(nil) 511 origSeen = make(map[string]struct{}) 512 curSeen = make(map[string]struct{}) 513 ) 514 for origIter.Next(true) { 515 if origIter.Leaf() { 516 continue 517 } 518 origSeen[string(origIter.Path())] = struct{}{} 519 } 520 for curIter.Next(true) { 521 if curIter.Leaf() { 522 continue 523 } 524 curSeen[string(curIter.Path())] = struct{}{} 525 } 526 var ( 527 insertExp = make(map[string]struct{}) 528 deleteExp = make(map[string]struct{}) 529 ) 530 for path := range curSeen { 531 _, present := origSeen[path] 532 if !present { 533 insertExp[path] = struct{}{} 534 } 535 } 536 for path := range origSeen { 537 _, present := curSeen[path] 538 if !present { 539 deleteExp[path] = struct{}{} 540 } 541 } 542 if len(insertExp) != len(inserted) { 543 rt[i].err = fmt.Errorf("insert set mismatch") 544 } 545 if len(deleteExp) != len(deleted) { 546 rt[i].err = fmt.Errorf("delete set mismatch") 547 } 548 for _, insert := range inserted { 549 if _, present := insertExp[string(insert)]; !present { 550 rt[i].err = fmt.Errorf("missing inserted node") 551 } 552 } 553 for _, del := range deleted { 554 if _, present := deleteExp[string(del)]; !present { 555 rt[i].err = fmt.Errorf("missing deleted node") 556 } 557 } 558 } 559 // Abort the test on error. 560 if rt[i].err != nil { 561 return false 562 } 563 } 564 return true 565 } 566 567 func TestRandom(t *testing.T) { 568 if err := quick.Check(runRandTest, nil); err != nil { 569 if cerr, ok := err.(*quick.CheckError); ok { 570 t.Fatalf("random test iteration %d failed: %s", cerr.Count, spew.Sdump(cerr.In)) 571 } 572 t.Fatal(err) 573 } 574 } 575 576 func BenchmarkGet(b *testing.B) { benchGet(b) } 577 func BenchmarkUpdateBE(b *testing.B) { benchUpdate(b, binary.BigEndian) } 578 func BenchmarkUpdateLE(b *testing.B) { benchUpdate(b, binary.LittleEndian) } 579 580 const benchElemCount = 20000 581 582 func benchGet(b *testing.B) { 583 triedb := NewDatabase(rawdb.NewMemoryDatabase()) 584 trie := NewEmpty(triedb) 585 k := make([]byte, 32) 586 for i := 0; i < benchElemCount; i++ { 587 binary.LittleEndian.PutUint64(k, uint64(i)) 588 trie.Update(k, k) 589 } 590 binary.LittleEndian.PutUint64(k, benchElemCount/2) 591 592 b.ResetTimer() 593 for i := 0; i < b.N; i++ { 594 trie.Get(k) 595 } 596 b.StopTimer() 597 } 598 599 func benchUpdate(b *testing.B, e binary.ByteOrder) *Trie { 600 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 601 k := make([]byte, 32) 602 b.ReportAllocs() 603 for i := 0; i < b.N; i++ { 604 e.PutUint64(k, uint64(i)) 605 trie.Update(k, k) 606 } 607 return trie 608 } 609 610 // Benchmarks the trie hashing. Since the trie caches the result of any operation, 611 // we cannot use b.N as the number of hashing rounds, since all rounds apart from 612 // the first one will be NOOP. As such, we'll use b.N as the number of account to 613 // insert into the trie before measuring the hashing. 614 // BenchmarkHash-6 288680 4561 ns/op 682 B/op 9 allocs/op 615 // BenchmarkHash-6 275095 4800 ns/op 685 B/op 9 allocs/op 616 // pure hasher: 617 // BenchmarkHash-6 319362 4230 ns/op 675 B/op 9 allocs/op 618 // BenchmarkHash-6 257460 4674 ns/op 689 B/op 9 allocs/op 619 // With hashing in-between and pure hasher: 620 // BenchmarkHash-6 225417 7150 ns/op 982 B/op 12 allocs/op 621 // BenchmarkHash-6 220378 6197 ns/op 983 B/op 12 allocs/op 622 // same with old hasher 623 // BenchmarkHash-6 229758 6437 ns/op 981 B/op 12 allocs/op 624 // BenchmarkHash-6 212610 7137 ns/op 986 B/op 12 allocs/op 625 func BenchmarkHash(b *testing.B) { 626 // Create a realistic account trie to hash. We're first adding and hashing N 627 // entries, then adding N more. 628 addresses, accounts := makeAccounts(2 * b.N) 629 // Insert the accounts into the trie and hash it 630 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 631 i := 0 632 for ; i < len(addresses)/2; i++ { 633 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 634 } 635 trie.Hash() 636 for ; i < len(addresses); i++ { 637 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 638 } 639 b.ResetTimer() 640 b.ReportAllocs() 641 //trie.hashRoot(nil, nil) 642 trie.Hash() 643 } 644 645 // Benchmarks the trie Commit following a Hash. Since the trie caches the result of any operation, 646 // we cannot use b.N as the number of hashing rounds, since all rounds apart from 647 // the first one will be NOOP. As such, we'll use b.N as the number of account to 648 // insert into the trie before measuring the hashing. 649 func BenchmarkCommitAfterHash(b *testing.B) { 650 b.Run("no-onleaf", func(b *testing.B) { 651 benchmarkCommitAfterHash(b, false) 652 }) 653 b.Run("with-onleaf", func(b *testing.B) { 654 benchmarkCommitAfterHash(b, true) 655 }) 656 } 657 658 func benchmarkCommitAfterHash(b *testing.B, collectLeaf bool) { 659 // Make the random benchmark deterministic 660 addresses, accounts := makeAccounts(b.N) 661 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 662 for i := 0; i < len(addresses); i++ { 663 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 664 } 665 // Insert the accounts into the trie and hash it 666 trie.Hash() 667 b.ResetTimer() 668 b.ReportAllocs() 669 trie.Commit(collectLeaf) 670 } 671 672 func TestTinyTrie(t *testing.T) { 673 // Create a realistic account trie to hash 674 _, accounts := makeAccounts(5) 675 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 676 trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001337"), accounts[3]) 677 if exp, root := common.HexToHash("8c6a85a4d9fda98feff88450299e574e5378e32391f75a055d470ac0653f1005"), trie.Hash(); exp != root { 678 t.Errorf("1: got %x, exp %x", root, exp) 679 } 680 trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001338"), accounts[4]) 681 if exp, root := common.HexToHash("ec63b967e98a5720e7f720482151963982890d82c9093c0d486b7eb8883a66b1"), trie.Hash(); exp != root { 682 t.Errorf("2: got %x, exp %x", root, exp) 683 } 684 trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001339"), accounts[4]) 685 if exp, root := common.HexToHash("0608c1d1dc3905fa22204c7a0e43644831c3b6d3def0f274be623a948197e64a"), trie.Hash(); exp != root { 686 t.Errorf("3: got %x, exp %x", root, exp) 687 } 688 checktr := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 689 it := NewIterator(trie.NodeIterator(nil)) 690 for it.Next() { 691 checktr.Update(it.Key, it.Value) 692 } 693 if troot, itroot := trie.Hash(), checktr.Hash(); troot != itroot { 694 t.Fatalf("hash mismatch in opItercheckhash, trie: %x, check: %x", troot, itroot) 695 } 696 } 697 698 func TestCommitAfterHash(t *testing.T) { 699 // Create a realistic account trie to hash 700 addresses, accounts := makeAccounts(1000) 701 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 702 for i := 0; i < len(addresses); i++ { 703 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 704 } 705 // Insert the accounts into the trie and hash it 706 trie.Hash() 707 trie.Commit(false) 708 root := trie.Hash() 709 exp := common.HexToHash("72f9d3f3fe1e1dd7b8936442e7642aef76371472d94319900790053c493f3fe6") 710 if exp != root { 711 t.Errorf("got %x, exp %x", root, exp) 712 } 713 root, _, _ = trie.Commit(false) 714 if exp != root { 715 t.Errorf("got %x, exp %x", root, exp) 716 } 717 } 718 719 func makeAccounts(size int) (addresses [][20]byte, accounts [][]byte) { 720 // Make the random benchmark deterministic 721 random := rand.New(rand.NewSource(0)) 722 // Create a realistic account trie to hash 723 addresses = make([][20]byte, size) 724 for i := 0; i < len(addresses); i++ { 725 data := make([]byte, 20) 726 random.Read(data) 727 copy(addresses[i][:], data) 728 } 729 accounts = make([][]byte, len(addresses)) 730 for i := 0; i < len(accounts); i++ { 731 var ( 732 nonce = uint64(random.Int63()) 733 root = emptyRoot 734 code = crypto.Keccak256(nil) 735 ) 736 // The big.Rand function is not deterministic with regards to 64 vs 32 bit systems, 737 // and will consume different amount of data from the rand source. 738 //balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil)) 739 // Therefore, we instead just read via byte buffer 740 numBytes := random.Uint32() % 33 // [0, 32] bytes 741 balanceBytes := make([]byte, numBytes) 742 random.Read(balanceBytes) 743 balance := new(big.Int).SetBytes(balanceBytes) 744 data, _ := rlp.EncodeToBytes(&types.StateAccount{Nonce: nonce, Balance: balance, Root: root, CodeHash: code}) 745 accounts[i] = data 746 } 747 return addresses, accounts 748 } 749 750 // spongeDb is a dummy db backend which accumulates writes in a sponge 751 type spongeDb struct { 752 sponge hash.Hash 753 id string 754 journal []string 755 } 756 757 func (s *spongeDb) Has(key []byte) (bool, error) { panic("implement me") } 758 func (s *spongeDb) Get(key []byte) ([]byte, error) { return nil, errors.New("no such elem") } 759 func (s *spongeDb) Delete(key []byte) error { panic("implement me") } 760 func (s *spongeDb) NewBatch() ethdb.Batch { return &spongeBatch{s} } 761 func (s *spongeDb) NewBatchWithSize(size int) ethdb.Batch { return &spongeBatch{s} } 762 func (s *spongeDb) NewSnapshot() (ethdb.Snapshot, error) { panic("implement me") } 763 func (s *spongeDb) Stat(property string) (string, error) { panic("implement me") } 764 func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") } 765 func (s *spongeDb) Close() error { return nil } 766 func (s *spongeDb) Put(key []byte, value []byte) error { 767 valbrief := value 768 if len(valbrief) > 8 { 769 valbrief = valbrief[:8] 770 } 771 s.journal = append(s.journal, fmt.Sprintf("%v: PUT([%x...], [%d bytes] %x...)\n", s.id, key[:8], len(value), valbrief)) 772 s.sponge.Write(key) 773 s.sponge.Write(value) 774 return nil 775 } 776 func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") } 777 778 // spongeBatch is a dummy batch which immediately writes to the underlying spongedb 779 type spongeBatch struct { 780 db *spongeDb 781 } 782 783 func (b *spongeBatch) Put(key, value []byte) error { 784 b.db.Put(key, value) 785 return nil 786 } 787 func (b *spongeBatch) Delete(key []byte) error { panic("implement me") } 788 func (b *spongeBatch) ValueSize() int { return 100 } 789 func (b *spongeBatch) Write() error { return nil } 790 func (b *spongeBatch) Reset() {} 791 func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil } 792 793 // TestCommitSequence tests that the trie.Commit operation writes the elements of the trie 794 // in the expected order, and calls the callbacks in the expected order. 795 // The test data was based on the 'master' code, and is basically random. It can be used 796 // to check whether changes to the trie modifies the write order or data in any way. 797 func TestCommitSequence(t *testing.T) { 798 for i, tc := range []struct { 799 count int 800 expWriteSeqHash []byte 801 expCallbackSeqHash []byte 802 }{ 803 {20, common.FromHex("873c78df73d60e59d4a2bcf3716e8bfe14554549fea2fc147cb54129382a8066"), 804 common.FromHex("ff00f91ac05df53b82d7f178d77ada54fd0dca64526f537034a5dbe41b17df2a")}, 805 {200, common.FromHex("ba03d891bb15408c940eea5ee3d54d419595102648d02774a0268d892add9c8e"), 806 common.FromHex("f3cd509064c8d319bbdd1c68f511850a902ad275e6ed5bea11547e23d492a926")}, 807 {2000, common.FromHex("f7a184f20df01c94f09537401d11e68d97ad0c00115233107f51b9c287ce60c7"), 808 common.FromHex("ff795ea898ba1e4cfed4a33b4cf5535a347a02cf931f88d88719faf810f9a1c9")}, 809 } { 810 addresses, accounts := makeAccounts(tc.count) 811 // This spongeDb is used to check the sequence of disk-db-writes 812 s := &spongeDb{sponge: sha3.NewLegacyKeccak256()} 813 db := NewDatabase(rawdb.NewDatabase(s)) 814 trie := NewEmpty(db) 815 // Another sponge is used to check the callback-sequence 816 callbackSponge := sha3.NewLegacyKeccak256() 817 // Fill the trie with elements 818 for i := 0; i < tc.count; i++ { 819 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 820 } 821 // Flush trie -> database 822 root, nodes, _ := trie.Commit(false) 823 db.Update(NewWithNodeSet(nodes)) 824 // Flush memdb -> disk (sponge) 825 db.Commit(root, false, func(c common.Hash) { 826 // And spongify the callback-order 827 callbackSponge.Write(c[:]) 828 }) 829 if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) { 830 t.Errorf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp) 831 } 832 if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) { 833 t.Errorf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp) 834 } 835 } 836 } 837 838 // TestCommitSequenceRandomBlobs is identical to TestCommitSequence 839 // but uses random blobs instead of 'accounts' 840 func TestCommitSequenceRandomBlobs(t *testing.T) { 841 for i, tc := range []struct { 842 count int 843 expWriteSeqHash []byte 844 expCallbackSeqHash []byte 845 }{ 846 {20, common.FromHex("8e4a01548551d139fa9e833ebc4e66fc1ba40a4b9b7259d80db32cff7b64ebbc"), 847 common.FromHex("450238d73bc36dc6cc6f926987e5428535e64be403877c4560e238a52749ba24")}, 848 {200, common.FromHex("6869b4e7b95f3097a19ddb30ff735f922b915314047e041614df06958fc50554"), 849 common.FromHex("0ace0b03d6cb8c0b82f6289ef5b1a1838306b455a62dafc63cada8e2924f2550")}, 850 {2000, common.FromHex("444200e6f4e2df49f77752f629a96ccf7445d4698c164f962bbd85a0526ef424"), 851 common.FromHex("117d30dafaa62a1eed498c3dfd70982b377ba2b46dd3e725ed6120c80829e518")}, 852 } { 853 prng := rand.New(rand.NewSource(int64(i))) 854 // This spongeDb is used to check the sequence of disk-db-writes 855 s := &spongeDb{sponge: sha3.NewLegacyKeccak256()} 856 db := NewDatabase(rawdb.NewDatabase(s)) 857 trie := NewEmpty(db) 858 // Another sponge is used to check the callback-sequence 859 callbackSponge := sha3.NewLegacyKeccak256() 860 // Fill the trie with elements 861 for i := 0; i < tc.count; i++ { 862 key := make([]byte, 32) 863 var val []byte 864 // 50% short elements, 50% large elements 865 if prng.Intn(2) == 0 { 866 val = make([]byte, 1+prng.Intn(32)) 867 } else { 868 val = make([]byte, 1+prng.Intn(4096)) 869 } 870 prng.Read(key) 871 prng.Read(val) 872 trie.Update(key, val) 873 } 874 // Flush trie -> database 875 root, nodes, _ := trie.Commit(false) 876 db.Update(NewWithNodeSet(nodes)) 877 // Flush memdb -> disk (sponge) 878 db.Commit(root, false, func(c common.Hash) { 879 // And spongify the callback-order 880 callbackSponge.Write(c[:]) 881 }) 882 if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) { 883 t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp) 884 } 885 if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) { 886 t.Fatalf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp) 887 } 888 } 889 } 890 891 func TestCommitSequenceStackTrie(t *testing.T) { 892 for count := 1; count < 200; count++ { 893 prng := rand.New(rand.NewSource(int64(count))) 894 // This spongeDb is used to check the sequence of disk-db-writes 895 s := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "a"} 896 db := NewDatabase(rawdb.NewDatabase(s)) 897 trie := NewEmpty(db) 898 // Another sponge is used for the stacktrie commits 899 stackTrieSponge := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "b"} 900 stTrie := NewStackTrie(func(owner common.Hash, path []byte, hash common.Hash, blob []byte) { 901 db.Scheme().WriteTrieNode(stackTrieSponge, owner, path, hash, blob) 902 }) 903 // Fill the trie with elements 904 for i := 0; i < count; i++ { 905 // For the stack trie, we need to do inserts in proper order 906 key := make([]byte, 32) 907 binary.BigEndian.PutUint64(key, uint64(i)) 908 var val []byte 909 // 50% short elements, 50% large elements 910 if prng.Intn(2) == 0 { 911 val = make([]byte, 1+prng.Intn(32)) 912 } else { 913 val = make([]byte, 1+prng.Intn(1024)) 914 } 915 prng.Read(val) 916 trie.TryUpdate(key, val) 917 stTrie.TryUpdate(key, val) 918 } 919 // Flush trie -> database 920 root, nodes, _ := trie.Commit(false) 921 // Flush memdb -> disk (sponge) 922 db.Update(NewWithNodeSet(nodes)) 923 db.Commit(root, false, nil) 924 // And flush stacktrie -> disk 925 stRoot, err := stTrie.Commit() 926 if err != nil { 927 t.Fatalf("Failed to commit stack trie %v", err) 928 } 929 if stRoot != root { 930 t.Fatalf("root wrong, got %x exp %x", stRoot, root) 931 } 932 if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) { 933 // Show the journal 934 t.Logf("Expected:") 935 for i, v := range s.journal { 936 t.Logf("op %d: %v", i, v) 937 } 938 t.Logf("Stacktrie:") 939 for i, v := range stackTrieSponge.journal { 940 t.Logf("op %d: %v", i, v) 941 } 942 t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", count, got, exp) 943 } 944 } 945 } 946 947 // TestCommitSequenceSmallRoot tests that a trie which is essentially only a 948 // small (<32 byte) shortnode with an included value is properly committed to a 949 // database. 950 // This case might not matter, since in practice, all keys are 32 bytes, which means 951 // that even a small trie which contains a leaf will have an extension making it 952 // not fit into 32 bytes, rlp-encoded. However, it's still the correct thing to do. 953 func TestCommitSequenceSmallRoot(t *testing.T) { 954 s := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "a"} 955 db := NewDatabase(rawdb.NewDatabase(s)) 956 trie := NewEmpty(db) 957 // Another sponge is used for the stacktrie commits 958 stackTrieSponge := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "b"} 959 stTrie := NewStackTrie(func(owner common.Hash, path []byte, hash common.Hash, blob []byte) { 960 db.Scheme().WriteTrieNode(stackTrieSponge, owner, path, hash, blob) 961 }) 962 // Add a single small-element to the trie(s) 963 key := make([]byte, 5) 964 key[0] = 1 965 trie.TryUpdate(key, []byte{0x1}) 966 stTrie.TryUpdate(key, []byte{0x1}) 967 // Flush trie -> database 968 root, nodes, _ := trie.Commit(false) 969 // Flush memdb -> disk (sponge) 970 db.Update(NewWithNodeSet(nodes)) 971 db.Commit(root, false, nil) 972 // And flush stacktrie -> disk 973 stRoot, err := stTrie.Commit() 974 if err != nil { 975 t.Fatalf("Failed to commit stack trie %v", err) 976 } 977 if stRoot != root { 978 t.Fatalf("root wrong, got %x exp %x", stRoot, root) 979 } 980 981 t.Logf("root: %x\n", stRoot) 982 if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) { 983 t.Fatalf("test, disk write sequence wrong:\ngot %x exp %x\n", got, exp) 984 } 985 } 986 987 // BenchmarkCommitAfterHashFixedSize benchmarks the Commit (after Hash) of a fixed number of updates to a trie. 988 // This benchmark is meant to capture the difference on efficiency of small versus large changes. Typically, 989 // storage tries are small (a couple of entries), whereas the full post-block account trie update is large (a couple 990 // of thousand entries) 991 func BenchmarkHashFixedSize(b *testing.B) { 992 b.Run("10", func(b *testing.B) { 993 b.StopTimer() 994 acc, add := makeAccounts(20) 995 for i := 0; i < b.N; i++ { 996 benchmarkHashFixedSize(b, acc, add) 997 } 998 }) 999 b.Run("100", func(b *testing.B) { 1000 b.StopTimer() 1001 acc, add := makeAccounts(100) 1002 for i := 0; i < b.N; i++ { 1003 benchmarkHashFixedSize(b, acc, add) 1004 } 1005 }) 1006 1007 b.Run("1K", func(b *testing.B) { 1008 b.StopTimer() 1009 acc, add := makeAccounts(1000) 1010 for i := 0; i < b.N; i++ { 1011 benchmarkHashFixedSize(b, acc, add) 1012 } 1013 }) 1014 b.Run("10K", func(b *testing.B) { 1015 b.StopTimer() 1016 acc, add := makeAccounts(10000) 1017 for i := 0; i < b.N; i++ { 1018 benchmarkHashFixedSize(b, acc, add) 1019 } 1020 }) 1021 b.Run("100K", func(b *testing.B) { 1022 b.StopTimer() 1023 acc, add := makeAccounts(100000) 1024 for i := 0; i < b.N; i++ { 1025 benchmarkHashFixedSize(b, acc, add) 1026 } 1027 }) 1028 } 1029 1030 func benchmarkHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { 1031 b.ReportAllocs() 1032 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 1033 for i := 0; i < len(addresses); i++ { 1034 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 1035 } 1036 // Insert the accounts into the trie and hash it 1037 b.StartTimer() 1038 trie.Hash() 1039 b.StopTimer() 1040 } 1041 1042 func BenchmarkCommitAfterHashFixedSize(b *testing.B) { 1043 b.Run("10", func(b *testing.B) { 1044 b.StopTimer() 1045 acc, add := makeAccounts(20) 1046 for i := 0; i < b.N; i++ { 1047 benchmarkCommitAfterHashFixedSize(b, acc, add) 1048 } 1049 }) 1050 b.Run("100", func(b *testing.B) { 1051 b.StopTimer() 1052 acc, add := makeAccounts(100) 1053 for i := 0; i < b.N; i++ { 1054 benchmarkCommitAfterHashFixedSize(b, acc, add) 1055 } 1056 }) 1057 1058 b.Run("1K", func(b *testing.B) { 1059 b.StopTimer() 1060 acc, add := makeAccounts(1000) 1061 for i := 0; i < b.N; i++ { 1062 benchmarkCommitAfterHashFixedSize(b, acc, add) 1063 } 1064 }) 1065 b.Run("10K", func(b *testing.B) { 1066 b.StopTimer() 1067 acc, add := makeAccounts(10000) 1068 for i := 0; i < b.N; i++ { 1069 benchmarkCommitAfterHashFixedSize(b, acc, add) 1070 } 1071 }) 1072 b.Run("100K", func(b *testing.B) { 1073 b.StopTimer() 1074 acc, add := makeAccounts(100000) 1075 for i := 0; i < b.N; i++ { 1076 benchmarkCommitAfterHashFixedSize(b, acc, add) 1077 } 1078 }) 1079 } 1080 1081 func benchmarkCommitAfterHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { 1082 b.ReportAllocs() 1083 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 1084 for i := 0; i < len(addresses); i++ { 1085 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 1086 } 1087 // Insert the accounts into the trie and hash it 1088 trie.Hash() 1089 b.StartTimer() 1090 trie.Commit(false) 1091 b.StopTimer() 1092 } 1093 1094 func BenchmarkDerefRootFixedSize(b *testing.B) { 1095 b.Run("10", func(b *testing.B) { 1096 b.StopTimer() 1097 acc, add := makeAccounts(20) 1098 for i := 0; i < b.N; i++ { 1099 benchmarkDerefRootFixedSize(b, acc, add) 1100 } 1101 }) 1102 b.Run("100", func(b *testing.B) { 1103 b.StopTimer() 1104 acc, add := makeAccounts(100) 1105 for i := 0; i < b.N; i++ { 1106 benchmarkDerefRootFixedSize(b, acc, add) 1107 } 1108 }) 1109 1110 b.Run("1K", func(b *testing.B) { 1111 b.StopTimer() 1112 acc, add := makeAccounts(1000) 1113 for i := 0; i < b.N; i++ { 1114 benchmarkDerefRootFixedSize(b, acc, add) 1115 } 1116 }) 1117 b.Run("10K", func(b *testing.B) { 1118 b.StopTimer() 1119 acc, add := makeAccounts(10000) 1120 for i := 0; i < b.N; i++ { 1121 benchmarkDerefRootFixedSize(b, acc, add) 1122 } 1123 }) 1124 b.Run("100K", func(b *testing.B) { 1125 b.StopTimer() 1126 acc, add := makeAccounts(100000) 1127 for i := 0; i < b.N; i++ { 1128 benchmarkDerefRootFixedSize(b, acc, add) 1129 } 1130 }) 1131 } 1132 1133 func benchmarkDerefRootFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { 1134 b.ReportAllocs() 1135 triedb := NewDatabase(rawdb.NewMemoryDatabase()) 1136 trie := NewEmpty(triedb) 1137 for i := 0; i < len(addresses); i++ { 1138 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 1139 } 1140 h := trie.Hash() 1141 _, nodes, _ := trie.Commit(false) 1142 triedb.Update(NewWithNodeSet(nodes)) 1143 b.StartTimer() 1144 triedb.Dereference(h) 1145 b.StopTimer() 1146 } 1147 1148 func getString(trie *Trie, k string) []byte { 1149 return trie.Get([]byte(k)) 1150 } 1151 1152 func updateString(trie *Trie, k, v string) { 1153 trie.Update([]byte(k), []byte(v)) 1154 } 1155 1156 func deleteString(trie *Trie, k string) { 1157 trie.Delete([]byte(k)) 1158 } 1159 1160 func TestDecodeNode(t *testing.T) { 1161 t.Parallel() 1162 var ( 1163 hash = make([]byte, 20) 1164 elems = make([]byte, 20) 1165 ) 1166 for i := 0; i < 5000000; i++ { 1167 rand.Read(hash) 1168 rand.Read(elems) 1169 decodeNode(hash, elems) 1170 } 1171 }