github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/diff/fd/watson_test.go (about) 1 // Copyright ©2017 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package fd 6 7 import "github.com/jingcheng-WU/gonum/mat" 8 9 // Watson implements the Watson's function. 10 // Dimension of the problem should be 2 <= dim <= 31. For dim == 9, the problem 11 // of minimizing the function is very ill conditioned. 12 // 13 // This is copied from gonum.org/v1/optimize/functions for testing Hessian-like 14 // derivative methods. 15 // 16 // References: 17 // - Kowalik, J.S., Osborne, M.R.: Methods for Unconstrained Optimization 18 // Problems. Elsevier North-Holland, New York, 1968 19 // - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained 20 // optimization software. ACM Trans Math Softw 7 (1981), 17-41 21 type Watson struct{} 22 23 func (Watson) Func(x []float64) (sum float64) { 24 for i := 1; i <= 29; i++ { 25 d1 := float64(i) / 29 26 27 d2 := 1.0 28 var s1 float64 29 for j := 1; j < len(x); j++ { 30 s1 += float64(j) * d2 * x[j] 31 d2 *= d1 32 } 33 34 d2 = 1.0 35 var s2 float64 36 for _, v := range x { 37 s2 += d2 * v 38 d2 *= d1 39 } 40 41 t := s1 - s2*s2 - 1 42 sum += t * t 43 } 44 t := x[1] - x[0]*x[0] - 1 45 sum += x[0]*x[0] + t*t 46 return sum 47 } 48 49 func (Watson) Grad(grad, x []float64) { 50 if len(x) != len(grad) { 51 panic("incorrect size of the gradient") 52 } 53 54 for i := range grad { 55 grad[i] = 0 56 } 57 for i := 1; i <= 29; i++ { 58 d1 := float64(i) / 29 59 60 d2 := 1.0 61 var s1 float64 62 for j := 1; j < len(x); j++ { 63 s1 += float64(j) * d2 * x[j] 64 d2 *= d1 65 } 66 67 d2 = 1.0 68 var s2 float64 69 for _, v := range x { 70 s2 += d2 * v 71 d2 *= d1 72 } 73 74 t := s1 - s2*s2 - 1 75 s3 := 2 * d1 * s2 76 d2 = 2 / d1 77 for j := range x { 78 grad[j] += d2 * (float64(j) - s3) * t 79 d2 *= d1 80 } 81 } 82 t := x[1] - x[0]*x[0] - 1 83 grad[0] += x[0] * (2 - 4*t) 84 grad[1] += 2 * t 85 } 86 87 func (Watson) Hess(hess mat.MutableSymmetric, x []float64) { 88 dim := len(x) 89 if dim != hess.Symmetric() { 90 panic("incorrect size of the Hessian") 91 } 92 93 for j := 0; j < dim; j++ { 94 for k := j; k < dim; k++ { 95 hess.SetSym(j, k, 0) 96 } 97 } 98 for i := 1; i <= 29; i++ { 99 d1 := float64(i) / 29 100 d2 := 1.0 101 var s1 float64 102 for j := 1; j < dim; j++ { 103 s1 += float64(j) * d2 * x[j] 104 d2 *= d1 105 } 106 107 d2 = 1.0 108 var s2 float64 109 for _, v := range x { 110 s2 += d2 * v 111 d2 *= d1 112 } 113 114 t := s1 - s2*s2 - 1 115 s3 := 2 * d1 * s2 116 d2 = 2 / d1 117 th := 2 * d1 * d1 * t 118 for j := 0; j < dim; j++ { 119 v := float64(j) - s3 120 d3 := 1 / d1 121 for k := 0; k <= j; k++ { 122 hess.SetSym(k, j, hess.At(k, j)+d2*d3*(v*(float64(k)-s3)-th)) 123 d3 *= d1 124 } 125 d2 *= d1 126 } 127 } 128 t1 := x[1] - x[0]*x[0] - 1 129 hess.SetSym(0, 0, hess.At(0, 0)+8*x[0]*x[0]+2-4*t1) 130 hess.SetSym(0, 1, hess.At(0, 1)-4*x[0]) 131 hess.SetSym(1, 1, hess.At(1, 1)+2) 132 }