github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/graph/spectral/laplacian.go (about)

     1  // Copyright ©2017 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package spectral
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/jingcheng-WU/gonum/graph"
    11  	"github.com/jingcheng-WU/gonum/mat"
    12  )
    13  
    14  // Laplacian is a graph Laplacian matrix.
    15  type Laplacian struct {
    16  	// Matrix holds the Laplacian matrix.
    17  	mat.Matrix
    18  
    19  	// Nodes holds the input graph nodes.
    20  	Nodes []graph.Node
    21  
    22  	// Index is a mapping from the graph
    23  	// node IDs to row and column indices.
    24  	Index map[int64]int
    25  }
    26  
    27  // NewLaplacian returns a Laplacian matrix for the simple undirected graph g.
    28  // The Laplacian is defined as D-A where D is a diagonal matrix holding the
    29  // degree of each node and A is the graph adjacency matrix of the input graph.
    30  // If g contains self edges, NewLaplacian will panic.
    31  func NewLaplacian(g graph.Undirected) Laplacian {
    32  	nodes := graph.NodesOf(g.Nodes())
    33  	indexOf := make(map[int64]int, len(nodes))
    34  	for i, n := range nodes {
    35  		id := n.ID()
    36  		indexOf[id] = i
    37  	}
    38  
    39  	l := mat.NewSymDense(len(nodes), nil)
    40  	for j, u := range nodes {
    41  		uid := u.ID()
    42  		to := graph.NodesOf(g.From(uid))
    43  		l.SetSym(j, j, float64(len(to)))
    44  		for _, v := range to {
    45  			vid := v.ID()
    46  			if uid == vid {
    47  				panic("network: self edge in graph")
    48  			}
    49  			if uid < vid {
    50  				l.SetSym(indexOf[vid], j, -1)
    51  			}
    52  		}
    53  	}
    54  
    55  	return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
    56  }
    57  
    58  // NewSymNormLaplacian returns a symmetric normalized Laplacian matrix for the
    59  // simple undirected graph g.
    60  // The normalized Laplacian is defined as I-D^(-1/2)AD^(-1/2) where D is a
    61  // diagonal matrix holding the degree of each node and A is the graph adjacency
    62  // matrix of the input graph.
    63  // If g contains self edges, NewSymNormLaplacian will panic.
    64  func NewSymNormLaplacian(g graph.Undirected) Laplacian {
    65  	nodes := graph.NodesOf(g.Nodes())
    66  	indexOf := make(map[int64]int, len(nodes))
    67  	for i, n := range nodes {
    68  		id := n.ID()
    69  		indexOf[id] = i
    70  	}
    71  
    72  	l := mat.NewSymDense(len(nodes), nil)
    73  	for j, u := range nodes {
    74  		uid := u.ID()
    75  		to := graph.NodesOf(g.From(uid))
    76  		if len(to) == 0 {
    77  			continue
    78  		}
    79  		l.SetSym(j, j, 1)
    80  		squdeg := math.Sqrt(float64(len(to)))
    81  		for _, v := range to {
    82  			vid := v.ID()
    83  			if uid == vid {
    84  				panic("network: self edge in graph")
    85  			}
    86  			if uid < vid {
    87  				to := g.From(vid)
    88  				k := to.Len()
    89  				if k < 0 {
    90  					k = len(graph.NodesOf(to))
    91  				}
    92  				l.SetSym(indexOf[vid], j, -1/(squdeg*math.Sqrt(float64(k))))
    93  			}
    94  		}
    95  	}
    96  
    97  	return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
    98  }
    99  
   100  // NewRandomWalkLaplacian returns a damp-scaled random walk Laplacian matrix for
   101  // the simple graph g.
   102  // The random walk Laplacian is defined as I-D^(-1)A where D is a diagonal matrix
   103  // holding the degree of each node and A is the graph adjacency matrix of the input
   104  // graph.
   105  // If g contains self edges, NewRandomWalkLaplacian will panic.
   106  func NewRandomWalkLaplacian(g graph.Graph, damp float64) Laplacian {
   107  	nodes := graph.NodesOf(g.Nodes())
   108  	indexOf := make(map[int64]int, len(nodes))
   109  	for i, n := range nodes {
   110  		id := n.ID()
   111  		indexOf[id] = i
   112  	}
   113  
   114  	l := mat.NewDense(len(nodes), len(nodes), nil)
   115  	for j, u := range nodes {
   116  		uid := u.ID()
   117  		to := graph.NodesOf(g.From(uid))
   118  		if len(to) == 0 {
   119  			continue
   120  		}
   121  		l.Set(j, j, 1-damp)
   122  		rudeg := (damp - 1) / float64(len(to))
   123  		for _, v := range to {
   124  			vid := v.ID()
   125  			if uid == vid {
   126  				panic("network: self edge in graph")
   127  			}
   128  			l.Set(indexOf[vid], j, rudeg)
   129  		}
   130  	}
   131  
   132  	return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
   133  }