github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dgerq2.go (about) 1 // Copyright ©2017 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import "github.com/jingcheng-WU/gonum/blas" 8 9 // Dgerq2 computes an RQ factorization of the m×n matrix A, 10 // A = R * Q. 11 // On exit, if m <= n, the upper triangle of the subarray 12 // A[0:m, n-m:n] contains the m×m upper triangular matrix R. 13 // If m >= n, the elements on and above the (m-n)-th subdiagonal 14 // contain the m×n upper trapezoidal matrix R. 15 // The remaining elements, with tau, represent the 16 // orthogonal matrix Q as a product of min(m,n) elementary 17 // reflectors. 18 // 19 // The matrix Q is represented as a product of elementary reflectors 20 // Q = H_0 H_1 . . . H_{min(m,n)-1}. 21 // Each H(i) has the form 22 // H_i = I - tau_i * v * vᵀ 23 // where v is a vector with v[0:n-k+i-1] stored in A[m-k+i, 0:n-k+i-1], 24 // v[n-k+i:n] = 0 and v[n-k+i] = 1. 25 // 26 // tau must have length min(m,n) and work must have length m, otherwise 27 // Dgerq2 will panic. 28 // 29 // Dgerq2 is an internal routine. It is exported for testing purposes. 30 func (impl Implementation) Dgerq2(m, n int, a []float64, lda int, tau, work []float64) { 31 switch { 32 case m < 0: 33 panic(mLT0) 34 case n < 0: 35 panic(nLT0) 36 case lda < max(1, n): 37 panic(badLdA) 38 case len(work) < m: 39 panic(shortWork) 40 } 41 42 // Quick return if possible. 43 k := min(m, n) 44 if k == 0 { 45 return 46 } 47 48 switch { 49 case len(a) < (m-1)*lda+n: 50 panic(shortA) 51 case len(tau) < k: 52 panic(shortTau) 53 } 54 55 for i := k - 1; i >= 0; i-- { 56 // Generate elementary reflector H[i] to annihilate 57 // A[m-k+i, 0:n-k+i-1]. 58 mki := m - k + i 59 nki := n - k + i 60 var aii float64 61 aii, tau[i] = impl.Dlarfg(nki+1, a[mki*lda+nki], a[mki*lda:], 1) 62 63 // Apply H[i] to A[0:m-k+i-1, 0:n-k+i] from the right. 64 a[mki*lda+nki] = 1 65 impl.Dlarf(blas.Right, mki, nki+1, a[mki*lda:], 1, tau[i], a, lda, work) 66 a[mki*lda+nki] = aii 67 } 68 }