github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dgetrf.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "github.com/jingcheng-WU/gonum/blas" 9 "github.com/jingcheng-WU/gonum/blas/blas64" 10 ) 11 12 // Dgetrf computes the LU decomposition of the m×n matrix A. 13 // The LU decomposition is a factorization of A into 14 // A = P * L * U 15 // where P is a permutation matrix, L is a unit lower triangular matrix, and 16 // U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored 17 // in place into a. 18 // 19 // ipiv is a permutation vector. It indicates that row i of the matrix was 20 // changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic 21 // otherwise. ipiv is zero-indexed. 22 // 23 // Dgetrf is the blocked version of the algorithm. 24 // 25 // Dgetrf returns whether the matrix A is singular. The LU decomposition will 26 // be computed regardless of the singularity of A, but division by zero 27 // will occur if the false is returned and the result is used to solve a 28 // system of equations. 29 func (impl Implementation) Dgetrf(m, n int, a []float64, lda int, ipiv []int) (ok bool) { 30 mn := min(m, n) 31 switch { 32 case m < 0: 33 panic(mLT0) 34 case n < 0: 35 panic(nLT0) 36 case lda < max(1, n): 37 panic(badLdA) 38 } 39 40 // Quick return if possible. 41 if mn == 0 { 42 return true 43 } 44 45 switch { 46 case len(a) < (m-1)*lda+n: 47 panic(shortA) 48 case len(ipiv) != mn: 49 panic(badLenIpiv) 50 } 51 52 bi := blas64.Implementation() 53 54 nb := impl.Ilaenv(1, "DGETRF", " ", m, n, -1, -1) 55 if nb <= 1 || mn <= nb { 56 // Use the unblocked algorithm. 57 return impl.Dgetf2(m, n, a, lda, ipiv) 58 } 59 ok = true 60 for j := 0; j < mn; j += nb { 61 jb := min(mn-j, nb) 62 blockOk := impl.Dgetf2(m-j, jb, a[j*lda+j:], lda, ipiv[j:j+jb]) 63 if !blockOk { 64 ok = false 65 } 66 for i := j; i <= min(m-1, j+jb-1); i++ { 67 ipiv[i] = j + ipiv[i] 68 } 69 impl.Dlaswp(j, a, lda, j, j+jb-1, ipiv[:j+jb], 1) 70 if j+jb < n { 71 impl.Dlaswp(n-j-jb, a[j+jb:], lda, j, j+jb-1, ipiv[:j+jb], 1) 72 bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.Unit, 73 jb, n-j-jb, 1, 74 a[j*lda+j:], lda, 75 a[j*lda+j+jb:], lda) 76 if j+jb < m { 77 bi.Dgemm(blas.NoTrans, blas.NoTrans, m-j-jb, n-j-jb, jb, -1, 78 a[(j+jb)*lda+j:], lda, 79 a[j*lda+j+jb:], lda, 80 1, a[(j+jb)*lda+j+jb:], lda) 81 } 82 } 83 } 84 return ok 85 }