github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dggsvp3.go (about)

     1  // Copyright ©2017 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/jingcheng-WU/gonum/blas"
    11  	"github.com/jingcheng-WU/gonum/lapack"
    12  )
    13  
    14  // Dggsvp3 computes orthogonal matrices U, V and Q such that
    15  //
    16  //                  n-k-l  k    l
    17  //  Uᵀ*A*Q =     k [ 0    A12  A13 ] if m-k-l >= 0;
    18  //               l [ 0     0   A23 ]
    19  //           m-k-l [ 0     0    0  ]
    20  //
    21  //                  n-k-l  k    l
    22  //  Uᵀ*A*Q =     k [ 0    A12  A13 ] if m-k-l < 0;
    23  //             m-k [ 0     0   A23 ]
    24  //
    25  //                  n-k-l  k    l
    26  //  Vᵀ*B*Q =     l [ 0     0   B13 ]
    27  //             p-l [ 0     0    0  ]
    28  //
    29  // where the k×k matrix A12 and l×l matrix B13 are non-singular
    30  // upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
    31  // otherwise A23 is (m-k)×l upper trapezoidal.
    32  //
    33  // Dggsvp3 returns k and l, the dimensions of the sub-blocks. k+l
    34  // is the effective numerical rank of the (m+p)×n matrix [ Aᵀ Bᵀ ]ᵀ.
    35  //
    36  // jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
    37  // is as follows
    38  //  jobU == lapack.GSVDU        Compute orthogonal matrix U
    39  //  jobU == lapack.GSVDNone     Do not compute orthogonal matrix.
    40  // The behavior is the same for jobV and jobQ with the exception that instead of
    41  // lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
    42  // The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
    43  // relevant job parameter is lapack.GSVDNone.
    44  //
    45  // tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
    46  // iteration procedure. Generally, they are the same as used in the preprocessing
    47  // step, for example,
    48  //  tola = max(m, n)*norm(A)*eps,
    49  //  tolb = max(p, n)*norm(B)*eps.
    50  // Where eps is the machine epsilon.
    51  //
    52  // iwork must have length n, work must have length at least max(1, lwork), and
    53  // lwork must be -1 or greater than zero, otherwise Dggsvp3 will panic.
    54  //
    55  // Dggsvp3 is an internal routine. It is exported for testing purposes.
    56  func (impl Implementation) Dggsvp3(jobU, jobV, jobQ lapack.GSVDJob, m, p, n int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, iwork []int, tau, work []float64, lwork int) (k, l int) {
    57  	wantu := jobU == lapack.GSVDU
    58  	wantv := jobV == lapack.GSVDV
    59  	wantq := jobQ == lapack.GSVDQ
    60  	switch {
    61  	case !wantu && jobU != lapack.GSVDNone:
    62  		panic(badGSVDJob + "U")
    63  	case !wantv && jobV != lapack.GSVDNone:
    64  		panic(badGSVDJob + "V")
    65  	case !wantq && jobQ != lapack.GSVDNone:
    66  		panic(badGSVDJob + "Q")
    67  	case m < 0:
    68  		panic(mLT0)
    69  	case p < 0:
    70  		panic(pLT0)
    71  	case n < 0:
    72  		panic(nLT0)
    73  	case lda < max(1, n):
    74  		panic(badLdA)
    75  	case ldb < max(1, n):
    76  		panic(badLdB)
    77  	case ldu < 1, wantu && ldu < m:
    78  		panic(badLdU)
    79  	case ldv < 1, wantv && ldv < p:
    80  		panic(badLdV)
    81  	case ldq < 1, wantq && ldq < n:
    82  		panic(badLdQ)
    83  	case len(iwork) != n:
    84  		panic(shortWork)
    85  	case lwork < 1 && lwork != -1:
    86  		panic(badLWork)
    87  	case len(work) < max(1, lwork):
    88  		panic(shortWork)
    89  	}
    90  
    91  	var lwkopt int
    92  	impl.Dgeqp3(p, n, b, ldb, iwork, tau, work, -1)
    93  	lwkopt = int(work[0])
    94  	if wantv {
    95  		lwkopt = max(lwkopt, p)
    96  	}
    97  	lwkopt = max(lwkopt, min(n, p))
    98  	lwkopt = max(lwkopt, m)
    99  	if wantq {
   100  		lwkopt = max(lwkopt, n)
   101  	}
   102  	impl.Dgeqp3(m, n, a, lda, iwork, tau, work, -1)
   103  	lwkopt = max(lwkopt, int(work[0]))
   104  	lwkopt = max(1, lwkopt)
   105  	if lwork == -1 {
   106  		work[0] = float64(lwkopt)
   107  		return 0, 0
   108  	}
   109  
   110  	switch {
   111  	case len(a) < (m-1)*lda+n:
   112  		panic(shortA)
   113  	case len(b) < (p-1)*ldb+n:
   114  		panic(shortB)
   115  	case wantu && len(u) < (m-1)*ldu+m:
   116  		panic(shortU)
   117  	case wantv && len(v) < (p-1)*ldv+p:
   118  		panic(shortV)
   119  	case wantq && len(q) < (n-1)*ldq+n:
   120  		panic(shortQ)
   121  	case len(tau) < n:
   122  		// tau check must come after lwkopt query since
   123  		// the Dggsvd3 call for lwkopt query may have
   124  		// lwork == -1, and tau is provided by work.
   125  		panic(shortTau)
   126  	}
   127  
   128  	const forward = true
   129  
   130  	// QR with column pivoting of B: B*P = V*[ S11 S12 ].
   131  	//                                       [  0   0  ]
   132  	for i := range iwork[:n] {
   133  		iwork[i] = 0
   134  	}
   135  	impl.Dgeqp3(p, n, b, ldb, iwork, tau, work, lwork)
   136  
   137  	// Update A := A*P.
   138  	impl.Dlapmt(forward, m, n, a, lda, iwork)
   139  
   140  	// Determine the effective rank of matrix B.
   141  	for i := 0; i < min(p, n); i++ {
   142  		if math.Abs(b[i*ldb+i]) > tolb {
   143  			l++
   144  		}
   145  	}
   146  
   147  	if wantv {
   148  		// Copy the details of V, and form V.
   149  		impl.Dlaset(blas.All, p, p, 0, 0, v, ldv)
   150  		if p > 1 {
   151  			impl.Dlacpy(blas.Lower, p-1, min(p, n), b[ldb:], ldb, v[ldv:], ldv)
   152  		}
   153  		impl.Dorg2r(p, p, min(p, n), v, ldv, tau, work)
   154  	}
   155  
   156  	// Clean up B.
   157  	for i := 1; i < l; i++ {
   158  		r := b[i*ldb : i*ldb+i]
   159  		for j := range r {
   160  			r[j] = 0
   161  		}
   162  	}
   163  	if p > l {
   164  		impl.Dlaset(blas.All, p-l, n, 0, 0, b[l*ldb:], ldb)
   165  	}
   166  
   167  	if wantq {
   168  		// Set Q = I and update Q := Q*P.
   169  		impl.Dlaset(blas.All, n, n, 0, 1, q, ldq)
   170  		impl.Dlapmt(forward, n, n, q, ldq, iwork)
   171  	}
   172  
   173  	if p >= l && n != l {
   174  		// RQ factorization of [ S11 S12 ]: [ S11 S12 ] = [ 0 S12 ]*Z.
   175  		impl.Dgerq2(l, n, b, ldb, tau, work)
   176  
   177  		// Update A := A*Zᵀ.
   178  		impl.Dormr2(blas.Right, blas.Trans, m, n, l, b, ldb, tau, a, lda, work)
   179  
   180  		if wantq {
   181  			// Update Q := Q*Zᵀ.
   182  			impl.Dormr2(blas.Right, blas.Trans, n, n, l, b, ldb, tau, q, ldq, work)
   183  		}
   184  
   185  		// Clean up B.
   186  		impl.Dlaset(blas.All, l, n-l, 0, 0, b, ldb)
   187  		for i := 1; i < l; i++ {
   188  			r := b[i*ldb+n-l : i*ldb+i+n-l]
   189  			for j := range r {
   190  				r[j] = 0
   191  			}
   192  		}
   193  	}
   194  
   195  	// Let              N-L     L
   196  	//            A = [ A11    A12 ] M,
   197  	//
   198  	// then the following does the complete QR decomposition of A11:
   199  	//
   200  	//          A11 = U*[  0  T12 ]*P1ᵀ.
   201  	//                  [  0   0  ]
   202  	for i := range iwork[:n-l] {
   203  		iwork[i] = 0
   204  	}
   205  	impl.Dgeqp3(m, n-l, a, lda, iwork[:n-l], tau, work, lwork)
   206  
   207  	// Determine the effective rank of A11.
   208  	for i := 0; i < min(m, n-l); i++ {
   209  		if math.Abs(a[i*lda+i]) > tola {
   210  			k++
   211  		}
   212  	}
   213  
   214  	// Update A12 := Uᵀ*A12, where A12 = A[0:m, n-l:n].
   215  	impl.Dorm2r(blas.Left, blas.Trans, m, l, min(m, n-l), a, lda, tau, a[n-l:], lda, work)
   216  
   217  	if wantu {
   218  		// Copy the details of U, and form U.
   219  		impl.Dlaset(blas.All, m, m, 0, 0, u, ldu)
   220  		if m > 1 {
   221  			impl.Dlacpy(blas.Lower, m-1, min(m, n-l), a[lda:], lda, u[ldu:], ldu)
   222  		}
   223  		impl.Dorg2r(m, m, min(m, n-l), u, ldu, tau, work)
   224  	}
   225  
   226  	if wantq {
   227  		// Update Q[0:n, 0:n-l] := Q[0:n, 0:n-l]*P1.
   228  		impl.Dlapmt(forward, n, n-l, q, ldq, iwork[:n-l])
   229  	}
   230  
   231  	// Clean up A: set the strictly lower triangular part of
   232  	// A[0:k, 0:k] = 0, and A[k:m, 0:n-l] = 0.
   233  	for i := 1; i < k; i++ {
   234  		r := a[i*lda : i*lda+i]
   235  		for j := range r {
   236  			r[j] = 0
   237  		}
   238  	}
   239  	if m > k {
   240  		impl.Dlaset(blas.All, m-k, n-l, 0, 0, a[k*lda:], lda)
   241  	}
   242  
   243  	if n-l > k {
   244  		// RQ factorization of [ T11 T12 ] = [ 0 T12 ]*Z1.
   245  		impl.Dgerq2(k, n-l, a, lda, tau, work)
   246  
   247  		if wantq {
   248  			// Update Q[0:n, 0:n-l] := Q[0:n, 0:n-l]*Z1ᵀ.
   249  			impl.Dorm2r(blas.Right, blas.Trans, n, n-l, k, a, lda, tau, q, ldq, work)
   250  		}
   251  
   252  		// Clean up A.
   253  		impl.Dlaset(blas.All, k, n-l-k, 0, 0, a, lda)
   254  		for i := 1; i < k; i++ {
   255  			r := a[i*lda+n-k-l : i*lda+i+n-k-l]
   256  			for j := range r {
   257  				a[j] = 0
   258  			}
   259  		}
   260  	}
   261  
   262  	if m > k {
   263  		// QR factorization of A[k:m, n-l:n].
   264  		impl.Dgeqr2(m-k, l, a[k*lda+n-l:], lda, tau, work)
   265  		if wantu {
   266  			// Update U[:, k:m) := U[:, k:m]*U1.
   267  			impl.Dorm2r(blas.Right, blas.NoTrans, m, m-k, min(m-k, l), a[k*lda+n-l:], lda, tau, u[k:], ldu, work)
   268  		}
   269  
   270  		// Clean up A.
   271  		for i := k + 1; i < m; i++ {
   272  			r := a[i*lda+n-l : i*lda+min(n-l+i-k, n)]
   273  			for j := range r {
   274  				r[j] = 0
   275  			}
   276  		}
   277  	}
   278  
   279  	work[0] = float64(lwkopt)
   280  	return k, l
   281  }