github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dlabrd.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "github.com/jingcheng-WU/gonum/blas" 9 "github.com/jingcheng-WU/gonum/blas/blas64" 10 ) 11 12 // Dlabrd reduces the first NB rows and columns of a real general m×n matrix 13 // A to upper or lower bidiagonal form by an orthogonal transformation 14 // Q**T * A * P 15 // If m >= n, A is reduced to upper bidiagonal form and upon exit the elements 16 // on and below the diagonal in the first nb columns represent the elementary 17 // reflectors, and the elements above the diagonal in the first nb rows represent 18 // the matrix P. If m < n, A is reduced to lower bidiagonal form and the elements 19 // P is instead stored above the diagonal. 20 // 21 // The reduction to bidiagonal form is stored in d and e, where d are the diagonal 22 // elements, and e are the off-diagonal elements. 23 // 24 // The matrices Q and P are products of elementary reflectors 25 // Q = H_0 * H_1 * ... * H_{nb-1} 26 // P = G_0 * G_1 * ... * G_{nb-1} 27 // where 28 // H_i = I - tauQ[i] * v_i * v_iᵀ 29 // G_i = I - tauP[i] * u_i * u_iᵀ 30 // 31 // As an example, on exit the entries of A when m = 6, n = 5, and nb = 2 32 // [ 1 1 u1 u1 u1] 33 // [v1 1 1 u2 u2] 34 // [v1 v2 a a a] 35 // [v1 v2 a a a] 36 // [v1 v2 a a a] 37 // [v1 v2 a a a] 38 // and when m = 5, n = 6, and nb = 2 39 // [ 1 u1 u1 u1 u1 u1] 40 // [ 1 1 u2 u2 u2 u2] 41 // [v1 1 a a a a] 42 // [v1 v2 a a a a] 43 // [v1 v2 a a a a] 44 // 45 // Dlabrd also returns the matrices X and Y which are used with U and V to 46 // apply the transformation to the unreduced part of the matrix 47 // A := A - V*Yᵀ - X*Uᵀ 48 // and returns the matrices X and Y which are needed to apply the 49 // transformation to the unreduced part of A. 50 // 51 // X is an m×nb matrix, Y is an n×nb matrix. d, e, taup, and tauq must all have 52 // length at least nb. Dlabrd will panic if these size constraints are violated. 53 // 54 // Dlabrd is an internal routine. It is exported for testing purposes. 55 func (impl Implementation) Dlabrd(m, n, nb int, a []float64, lda int, d, e, tauQ, tauP, x []float64, ldx int, y []float64, ldy int) { 56 switch { 57 case m < 0: 58 panic(mLT0) 59 case n < 0: 60 panic(nLT0) 61 case nb < 0: 62 panic(nbLT0) 63 case nb > n: 64 panic(nbGTN) 65 case nb > m: 66 panic(nbGTM) 67 case lda < max(1, n): 68 panic(badLdA) 69 case ldx < max(1, nb): 70 panic(badLdX) 71 case ldy < max(1, nb): 72 panic(badLdY) 73 } 74 75 if m == 0 || n == 0 || nb == 0 { 76 return 77 } 78 79 switch { 80 case len(a) < (m-1)*lda+n: 81 panic(shortA) 82 case len(d) < nb: 83 panic(shortD) 84 case len(e) < nb: 85 panic(shortE) 86 case len(tauQ) < nb: 87 panic(shortTauQ) 88 case len(tauP) < nb: 89 panic(shortTauP) 90 case len(x) < (m-1)*ldx+nb: 91 panic(shortX) 92 case len(y) < (n-1)*ldy+nb: 93 panic(shortY) 94 } 95 96 bi := blas64.Implementation() 97 98 if m >= n { 99 // Reduce to upper bidiagonal form. 100 for i := 0; i < nb; i++ { 101 bi.Dgemv(blas.NoTrans, m-i, i, -1, a[i*lda:], lda, y[i*ldy:], 1, 1, a[i*lda+i:], lda) 102 bi.Dgemv(blas.NoTrans, m-i, i, -1, x[i*ldx:], ldx, a[i:], lda, 1, a[i*lda+i:], lda) 103 104 a[i*lda+i], tauQ[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min(i+1, m-1)*lda+i:], lda) 105 d[i] = a[i*lda+i] 106 if i < n-1 { 107 // Compute Y[i+1:n, i]. 108 a[i*lda+i] = 1 109 bi.Dgemv(blas.Trans, m-i, n-i-1, 1, a[i*lda+i+1:], lda, a[i*lda+i:], lda, 0, y[(i+1)*ldy+i:], ldy) 110 bi.Dgemv(blas.Trans, m-i, i, 1, a[i*lda:], lda, a[i*lda+i:], lda, 0, y[i:], ldy) 111 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, y[(i+1)*ldy:], ldy, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 112 bi.Dgemv(blas.Trans, m-i, i, 1, x[i*ldx:], ldx, a[i*lda+i:], lda, 0, y[i:], ldy) 113 bi.Dgemv(blas.Trans, i, n-i-1, -1, a[i+1:], lda, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 114 bi.Dscal(n-i-1, tauQ[i], y[(i+1)*ldy+i:], ldy) 115 116 // Update A[i, i+1:n]. 117 bi.Dgemv(blas.NoTrans, n-i-1, i+1, -1, y[(i+1)*ldy:], ldy, a[i*lda:], 1, 1, a[i*lda+i+1:], 1) 118 bi.Dgemv(blas.Trans, i, n-i-1, -1, a[i+1:], lda, x[i*ldx:], 1, 1, a[i*lda+i+1:], 1) 119 120 // Generate reflection P[i] to annihilate A[i, i+2:n]. 121 a[i*lda+i+1], tauP[i] = impl.Dlarfg(n-i-1, a[i*lda+i+1], a[i*lda+min(i+2, n-1):], 1) 122 e[i] = a[i*lda+i+1] 123 a[i*lda+i+1] = 1 124 125 // Compute X[i+1:m, i]. 126 bi.Dgemv(blas.NoTrans, m-i-1, n-i-1, 1, a[(i+1)*lda+i+1:], lda, a[i*lda+i+1:], 1, 0, x[(i+1)*ldx+i:], ldx) 127 bi.Dgemv(blas.Trans, n-i-1, i+1, 1, y[(i+1)*ldy:], ldy, a[i*lda+i+1:], 1, 0, x[i:], ldx) 128 bi.Dgemv(blas.NoTrans, m-i-1, i+1, -1, a[(i+1)*lda:], lda, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 129 bi.Dgemv(blas.NoTrans, i, n-i-1, 1, a[i+1:], lda, a[i*lda+i+1:], 1, 0, x[i:], ldx) 130 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, x[(i+1)*ldx:], ldx, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 131 bi.Dscal(m-i-1, tauP[i], x[(i+1)*ldx+i:], ldx) 132 } 133 } 134 return 135 } 136 // Reduce to lower bidiagonal form. 137 for i := 0; i < nb; i++ { 138 // Update A[i,i:n] 139 bi.Dgemv(blas.NoTrans, n-i, i, -1, y[i*ldy:], ldy, a[i*lda:], 1, 1, a[i*lda+i:], 1) 140 bi.Dgemv(blas.Trans, i, n-i, -1, a[i:], lda, x[i*ldx:], 1, 1, a[i*lda+i:], 1) 141 142 // Generate reflection P[i] to annihilate A[i, i+1:n] 143 a[i*lda+i], tauP[i] = impl.Dlarfg(n-i, a[i*lda+i], a[i*lda+min(i+1, n-1):], 1) 144 d[i] = a[i*lda+i] 145 if i < m-1 { 146 a[i*lda+i] = 1 147 // Compute X[i+1:m, i]. 148 bi.Dgemv(blas.NoTrans, m-i-1, n-i, 1, a[(i+1)*lda+i:], lda, a[i*lda+i:], 1, 0, x[(i+1)*ldx+i:], ldx) 149 bi.Dgemv(blas.Trans, n-i, i, 1, y[i*ldy:], ldy, a[i*lda+i:], 1, 0, x[i:], ldx) 150 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, a[(i+1)*lda:], lda, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 151 bi.Dgemv(blas.NoTrans, i, n-i, 1, a[i:], lda, a[i*lda+i:], 1, 0, x[i:], ldx) 152 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, x[(i+1)*ldx:], ldx, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 153 bi.Dscal(m-i-1, tauP[i], x[(i+1)*ldx+i:], ldx) 154 155 // Update A[i+1:m, i]. 156 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, a[(i+1)*lda:], lda, y[i*ldy:], 1, 1, a[(i+1)*lda+i:], lda) 157 bi.Dgemv(blas.NoTrans, m-i-1, i+1, -1, x[(i+1)*ldx:], ldx, a[i:], lda, 1, a[(i+1)*lda+i:], lda) 158 159 // Generate reflection Q[i] to annihilate A[i+2:m, i]. 160 a[(i+1)*lda+i], tauQ[i] = impl.Dlarfg(m-i-1, a[(i+1)*lda+i], a[min(i+2, m-1)*lda+i:], lda) 161 e[i] = a[(i+1)*lda+i] 162 a[(i+1)*lda+i] = 1 163 164 // Compute Y[i+1:n, i]. 165 bi.Dgemv(blas.Trans, m-i-1, n-i-1, 1, a[(i+1)*lda+i+1:], lda, a[(i+1)*lda+i:], lda, 0, y[(i+1)*ldy+i:], ldy) 166 bi.Dgemv(blas.Trans, m-i-1, i, 1, a[(i+1)*lda:], lda, a[(i+1)*lda+i:], lda, 0, y[i:], ldy) 167 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, y[(i+1)*ldy:], ldy, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 168 bi.Dgemv(blas.Trans, m-i-1, i+1, 1, x[(i+1)*ldx:], ldx, a[(i+1)*lda+i:], lda, 0, y[i:], ldy) 169 bi.Dgemv(blas.Trans, i+1, n-i-1, -1, a[i+1:], lda, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 170 bi.Dscal(n-i-1, tauQ[i], y[(i+1)*ldy+i:], ldy) 171 } 172 } 173 }