github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dlahr2.go (about)

     1  // Copyright ©2016 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import (
     8  	"github.com/jingcheng-WU/gonum/blas"
     9  	"github.com/jingcheng-WU/gonum/blas/blas64"
    10  )
    11  
    12  // Dlahr2 reduces the first nb columns of a real general n×(n-k+1) matrix A so
    13  // that elements below the k-th subdiagonal are zero. The reduction is performed
    14  // by an orthogonal similarity transformation Qᵀ * A * Q. Dlahr2 returns the
    15  // matrices V and T which determine Q as a block reflector I - V*T*Vᵀ, and
    16  // also the matrix Y = A * V * T.
    17  //
    18  // The matrix Q is represented as a product of nb elementary reflectors
    19  //  Q = H_0 * H_1 * ... * H_{nb-1}.
    20  // Each H_i has the form
    21  //  H_i = I - tau[i] * v * vᵀ,
    22  // where v is a real vector with v[0:i+k-1] = 0 and v[i+k-1] = 1. v[i+k:n] is
    23  // stored on exit in A[i+k+1:n,i].
    24  //
    25  // The elements of the vectors v together form the (n-k+1)×nb matrix
    26  // V which is needed, with T and Y, to apply the transformation to the
    27  // unreduced part of the matrix, using an update of the form
    28  //  A = (I - V*T*Vᵀ) * (A - Y*Vᵀ).
    29  //
    30  // On entry, a contains the n×(n-k+1) general matrix A. On return, the elements
    31  // on and above the k-th subdiagonal in the first nb columns are overwritten
    32  // with the corresponding elements of the reduced matrix; the elements below the
    33  // k-th subdiagonal, with the slice tau, represent the matrix Q as a product of
    34  // elementary reflectors. The other columns of A are unchanged.
    35  //
    36  // The contents of A on exit are illustrated by the following example
    37  // with n = 7, k = 3 and nb = 2:
    38  //  [ a   a   a   a   a ]
    39  //  [ a   a   a   a   a ]
    40  //  [ a   a   a   a   a ]
    41  //  [ h   h   a   a   a ]
    42  //  [ v0  h   a   a   a ]
    43  //  [ v0  v1  a   a   a ]
    44  //  [ v0  v1  a   a   a ]
    45  // where a denotes an element of the original matrix A, h denotes a
    46  // modified element of the upper Hessenberg matrix H, and vi denotes an
    47  // element of the vector defining H_i.
    48  //
    49  // k is the offset for the reduction. Elements below the k-th subdiagonal in the
    50  // first nb columns are reduced to zero.
    51  //
    52  // nb is the number of columns to be reduced.
    53  //
    54  // On entry, a represents the n×(n-k+1) matrix A. On return, the elements on and
    55  // above the k-th subdiagonal in the first nb columns are overwritten with the
    56  // corresponding elements of the reduced matrix. The elements below the k-th
    57  // subdiagonal, with the slice tau, represent the matrix Q as a product of
    58  // elementary reflectors. The other columns of A are unchanged.
    59  //
    60  // tau will contain the scalar factors of the elementary reflectors. It must
    61  // have length at least nb.
    62  //
    63  // t and ldt represent the nb×nb upper triangular matrix T, and y and ldy
    64  // represent the n×nb matrix Y.
    65  //
    66  // Dlahr2 is an internal routine. It is exported for testing purposes.
    67  func (impl Implementation) Dlahr2(n, k, nb int, a []float64, lda int, tau, t []float64, ldt int, y []float64, ldy int) {
    68  	switch {
    69  	case n < 0:
    70  		panic(nLT0)
    71  	case k < 0:
    72  		panic(kLT0)
    73  	case nb < 0:
    74  		panic(nbLT0)
    75  	case nb > n:
    76  		panic(nbGTN)
    77  	case lda < max(1, n-k+1):
    78  		panic(badLdA)
    79  	case ldt < max(1, nb):
    80  		panic(badLdT)
    81  	case ldy < max(1, nb):
    82  		panic(badLdY)
    83  	}
    84  
    85  	// Quick return if possible.
    86  	if n < 0 {
    87  		return
    88  	}
    89  
    90  	switch {
    91  	case len(a) < (n-1)*lda+n-k+1:
    92  		panic(shortA)
    93  	case len(tau) < nb:
    94  		panic(shortTau)
    95  	case len(t) < (nb-1)*ldt+nb:
    96  		panic(shortT)
    97  	case len(y) < (n-1)*ldy+nb:
    98  		panic(shortY)
    99  	}
   100  
   101  	// Quick return if possible.
   102  	if n == 1 {
   103  		return
   104  	}
   105  
   106  	bi := blas64.Implementation()
   107  	var ei float64
   108  	for i := 0; i < nb; i++ {
   109  		if i > 0 {
   110  			// Update A[k:n,i].
   111  
   112  			// Update i-th column of A - Y * Vᵀ.
   113  			bi.Dgemv(blas.NoTrans, n-k, i,
   114  				-1, y[k*ldy:], ldy,
   115  				a[(k+i-1)*lda:], 1,
   116  				1, a[k*lda+i:], lda)
   117  
   118  			// Apply I - V * Tᵀ * Vᵀ to this column (call it b)
   119  			// from the left, using the last column of T as
   120  			// workspace.
   121  			// Let V = [ V1 ]   and   b = [ b1 ]   (first i rows)
   122  			//         [ V2 ]             [ b2 ]
   123  			// where V1 is unit lower triangular.
   124  			//
   125  			// w := V1ᵀ * b1.
   126  			bi.Dcopy(i, a[k*lda+i:], lda, t[nb-1:], ldt)
   127  			bi.Dtrmv(blas.Lower, blas.Trans, blas.Unit, i,
   128  				a[k*lda:], lda, t[nb-1:], ldt)
   129  
   130  			// w := w + V2ᵀ * b2.
   131  			bi.Dgemv(blas.Trans, n-k-i, i,
   132  				1, a[(k+i)*lda:], lda,
   133  				a[(k+i)*lda+i:], lda,
   134  				1, t[nb-1:], ldt)
   135  
   136  			// w := Tᵀ * w.
   137  			bi.Dtrmv(blas.Upper, blas.Trans, blas.NonUnit, i,
   138  				t, ldt, t[nb-1:], ldt)
   139  
   140  			// b2 := b2 - V2*w.
   141  			bi.Dgemv(blas.NoTrans, n-k-i, i,
   142  				-1, a[(k+i)*lda:], lda,
   143  				t[nb-1:], ldt,
   144  				1, a[(k+i)*lda+i:], lda)
   145  
   146  			// b1 := b1 - V1*w.
   147  			bi.Dtrmv(blas.Lower, blas.NoTrans, blas.Unit, i,
   148  				a[k*lda:], lda, t[nb-1:], ldt)
   149  			bi.Daxpy(i, -1, t[nb-1:], ldt, a[k*lda+i:], lda)
   150  
   151  			a[(k+i-1)*lda+i-1] = ei
   152  		}
   153  
   154  		// Generate the elementary reflector H_i to annihilate
   155  		// A[k+i+1:n,i].
   156  		ei, tau[i] = impl.Dlarfg(n-k-i, a[(k+i)*lda+i], a[min(k+i+1, n-1)*lda+i:], lda)
   157  		a[(k+i)*lda+i] = 1
   158  
   159  		// Compute Y[k:n,i].
   160  		bi.Dgemv(blas.NoTrans, n-k, n-k-i,
   161  			1, a[k*lda+i+1:], lda,
   162  			a[(k+i)*lda+i:], lda,
   163  			0, y[k*ldy+i:], ldy)
   164  		bi.Dgemv(blas.Trans, n-k-i, i,
   165  			1, a[(k+i)*lda:], lda,
   166  			a[(k+i)*lda+i:], lda,
   167  			0, t[i:], ldt)
   168  		bi.Dgemv(blas.NoTrans, n-k, i,
   169  			-1, y[k*ldy:], ldy,
   170  			t[i:], ldt,
   171  			1, y[k*ldy+i:], ldy)
   172  		bi.Dscal(n-k, tau[i], y[k*ldy+i:], ldy)
   173  
   174  		// Compute T[0:i,i].
   175  		bi.Dscal(i, -tau[i], t[i:], ldt)
   176  		bi.Dtrmv(blas.Upper, blas.NoTrans, blas.NonUnit, i,
   177  			t, ldt, t[i:], ldt)
   178  
   179  		t[i*ldt+i] = tau[i]
   180  	}
   181  	a[(k+nb-1)*lda+nb-1] = ei
   182  
   183  	// Compute Y[0:k,0:nb].
   184  	impl.Dlacpy(blas.All, k, nb, a[1:], lda, y, ldy)
   185  	bi.Dtrmm(blas.Right, blas.Lower, blas.NoTrans, blas.Unit, k, nb,
   186  		1, a[k*lda:], lda, y, ldy)
   187  	if n > k+nb {
   188  		bi.Dgemm(blas.NoTrans, blas.NoTrans, k, nb, n-k-nb,
   189  			1, a[1+nb:], lda,
   190  			a[(k+nb)*lda:], lda,
   191  			1, y, ldy)
   192  	}
   193  	bi.Dtrmm(blas.Right, blas.Upper, blas.NoTrans, blas.NonUnit, k, nb,
   194  		1, t, ldt, y, ldy)
   195  }