github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dlascl.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "github.com/jingcheng-WU/gonum/lapack" 11 ) 12 13 // Dlascl multiplies an m×n matrix by the scalar cto/cfrom. 14 // 15 // cfrom must not be zero, and cto and cfrom must not be NaN, otherwise Dlascl 16 // will panic. 17 // 18 // Dlascl is an internal routine. It is exported for testing purposes. 19 func (impl Implementation) Dlascl(kind lapack.MatrixType, kl, ku int, cfrom, cto float64, m, n int, a []float64, lda int) { 20 switch kind { 21 default: 22 panic(badMatrixType) 23 case 'H', 'B', 'Q', 'Z': // See dlascl.f. 24 panic("not implemented") 25 case lapack.General, lapack.UpperTri, lapack.LowerTri: 26 if lda < max(1, n) { 27 panic(badLdA) 28 } 29 } 30 switch { 31 case cfrom == 0: 32 panic(zeroCFrom) 33 case math.IsNaN(cfrom): 34 panic(nanCFrom) 35 case math.IsNaN(cto): 36 panic(nanCTo) 37 case m < 0: 38 panic(mLT0) 39 case n < 0: 40 panic(nLT0) 41 } 42 43 if n == 0 || m == 0 { 44 return 45 } 46 47 switch kind { 48 case lapack.General, lapack.UpperTri, lapack.LowerTri: 49 if len(a) < (m-1)*lda+n { 50 panic(shortA) 51 } 52 } 53 54 smlnum := dlamchS 55 bignum := 1 / smlnum 56 cfromc := cfrom 57 ctoc := cto 58 cfrom1 := cfromc * smlnum 59 for { 60 var done bool 61 var mul, ctol float64 62 if cfrom1 == cfromc { 63 // cfromc is inf. 64 mul = ctoc / cfromc 65 done = true 66 ctol = ctoc 67 } else { 68 ctol = ctoc / bignum 69 if ctol == ctoc { 70 // ctoc is either 0 or inf. 71 mul = ctoc 72 done = true 73 cfromc = 1 74 } else if math.Abs(cfrom1) > math.Abs(ctoc) && ctoc != 0 { 75 mul = smlnum 76 done = false 77 cfromc = cfrom1 78 } else if math.Abs(ctol) > math.Abs(cfromc) { 79 mul = bignum 80 done = false 81 ctoc = ctol 82 } else { 83 mul = ctoc / cfromc 84 done = true 85 } 86 } 87 switch kind { 88 case lapack.General: 89 for i := 0; i < m; i++ { 90 for j := 0; j < n; j++ { 91 a[i*lda+j] = a[i*lda+j] * mul 92 } 93 } 94 case lapack.UpperTri: 95 for i := 0; i < m; i++ { 96 for j := i; j < n; j++ { 97 a[i*lda+j] = a[i*lda+j] * mul 98 } 99 } 100 case lapack.LowerTri: 101 for i := 0; i < m; i++ { 102 for j := 0; j <= min(i, n-1); j++ { 103 a[i*lda+j] = a[i*lda+j] * mul 104 } 105 } 106 } 107 if done { 108 break 109 } 110 } 111 }