github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dlatrd.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "github.com/jingcheng-WU/gonum/blas" 9 "github.com/jingcheng-WU/gonum/blas/blas64" 10 ) 11 12 // Dlatrd reduces nb rows and columns of a real n×n symmetric matrix A to symmetric 13 // tridiagonal form. It computes the orthonormal similarity transformation 14 // Qᵀ * A * Q 15 // and returns the matrices V and W to apply to the unreduced part of A. If 16 // uplo == blas.Upper, the upper triangle is supplied and the last nb rows are 17 // reduced. If uplo == blas.Lower, the lower triangle is supplied and the first 18 // nb rows are reduced. 19 // 20 // a contains the symmetric matrix on entry with active triangular half specified 21 // by uplo. On exit, the nb columns have been reduced to tridiagonal form. The 22 // diagonal contains the diagonal of the reduced matrix, the off-diagonal is 23 // set to 1, and the remaining elements contain the data to construct Q. 24 // 25 // If uplo == blas.Upper, with n = 5 and nb = 2 on exit a is 26 // [ a a a v4 v5] 27 // [ a a v4 v5] 28 // [ a 1 v5] 29 // [ d 1] 30 // [ d] 31 // 32 // If uplo == blas.Lower, with n = 5 and nb = 2, on exit a is 33 // [ d ] 34 // [ 1 d ] 35 // [v1 1 a ] 36 // [v1 v2 a a ] 37 // [v1 v2 a a a] 38 // 39 // e contains the superdiagonal elements of the reduced matrix. If uplo == blas.Upper, 40 // e[n-nb:n-1] contains the last nb columns of the reduced matrix, while if 41 // uplo == blas.Lower, e[:nb] contains the first nb columns of the reduced matrix. 42 // e must have length at least n-1, and Dlatrd will panic otherwise. 43 // 44 // tau contains the scalar factors of the elementary reflectors needed to construct Q. 45 // The reflectors are stored in tau[n-nb:n-1] if uplo == blas.Upper, and in 46 // tau[:nb] if uplo == blas.Lower. tau must have length n-1, and Dlatrd will panic 47 // otherwise. 48 // 49 // w is an n×nb matrix. On exit it contains the data to update the unreduced part 50 // of A. 51 // 52 // The matrix Q is represented as a product of elementary reflectors. Each reflector 53 // H has the form 54 // I - tau * v * vᵀ 55 // If uplo == blas.Upper, 56 // Q = H_{n-1} * H_{n-2} * ... * H_{n-nb} 57 // where v[:i-1] is stored in A[:i-1,i], v[i-1] = 1, and v[i:n] = 0. 58 // 59 // If uplo == blas.Lower, 60 // Q = H_0 * H_1 * ... * H_{nb-1} 61 // where v[:i+1] = 0, v[i+1] = 1, and v[i+2:n] is stored in A[i+2:n,i]. 62 // 63 // The vectors v form the n×nb matrix V which is used with W to apply a 64 // symmetric rank-2 update to the unreduced part of A 65 // A = A - V * Wᵀ - W * Vᵀ 66 // 67 // Dlatrd is an internal routine. It is exported for testing purposes. 68 func (impl Implementation) Dlatrd(uplo blas.Uplo, n, nb int, a []float64, lda int, e, tau, w []float64, ldw int) { 69 switch { 70 case uplo != blas.Upper && uplo != blas.Lower: 71 panic(badUplo) 72 case n < 0: 73 panic(nLT0) 74 case nb < 0: 75 panic(nbLT0) 76 case nb > n: 77 panic(nbGTN) 78 case lda < max(1, n): 79 panic(badLdA) 80 case ldw < max(1, nb): 81 panic(badLdW) 82 } 83 84 if n == 0 { 85 return 86 } 87 88 switch { 89 case len(a) < (n-1)*lda+n: 90 panic(shortA) 91 case len(w) < (n-1)*ldw+nb: 92 panic(shortW) 93 case len(e) < n-1: 94 panic(shortE) 95 case len(tau) < n-1: 96 panic(shortTau) 97 } 98 99 bi := blas64.Implementation() 100 101 if uplo == blas.Upper { 102 for i := n - 1; i >= n-nb; i-- { 103 iw := i - n + nb 104 if i < n-1 { 105 // Update A(0:i, i). 106 bi.Dgemv(blas.NoTrans, i+1, n-i-1, -1, a[i+1:], lda, 107 w[i*ldw+iw+1:], 1, 1, a[i:], lda) 108 bi.Dgemv(blas.NoTrans, i+1, n-i-1, -1, w[iw+1:], ldw, 109 a[i*lda+i+1:], 1, 1, a[i:], lda) 110 } 111 if i > 0 { 112 // Generate elementary reflector H_i to annihilate A(0:i-2,i). 113 e[i-1], tau[i-1] = impl.Dlarfg(i, a[(i-1)*lda+i], a[i:], lda) 114 a[(i-1)*lda+i] = 1 115 116 // Compute W(0:i-1, i). 117 bi.Dsymv(blas.Upper, i, 1, a, lda, a[i:], lda, 0, w[iw:], ldw) 118 if i < n-1 { 119 bi.Dgemv(blas.Trans, i, n-i-1, 1, w[iw+1:], ldw, 120 a[i:], lda, 0, w[(i+1)*ldw+iw:], ldw) 121 bi.Dgemv(blas.NoTrans, i, n-i-1, -1, a[i+1:], lda, 122 w[(i+1)*ldw+iw:], ldw, 1, w[iw:], ldw) 123 bi.Dgemv(blas.Trans, i, n-i-1, 1, a[i+1:], lda, 124 a[i:], lda, 0, w[(i+1)*ldw+iw:], ldw) 125 bi.Dgemv(blas.NoTrans, i, n-i-1, -1, w[iw+1:], ldw, 126 w[(i+1)*ldw+iw:], ldw, 1, w[iw:], ldw) 127 } 128 bi.Dscal(i, tau[i-1], w[iw:], ldw) 129 alpha := -0.5 * tau[i-1] * bi.Ddot(i, w[iw:], ldw, a[i:], lda) 130 bi.Daxpy(i, alpha, a[i:], lda, w[iw:], ldw) 131 } 132 } 133 } else { 134 // Reduce first nb columns of lower triangle. 135 for i := 0; i < nb; i++ { 136 // Update A(i:n, i) 137 bi.Dgemv(blas.NoTrans, n-i, i, -1, a[i*lda:], lda, 138 w[i*ldw:], 1, 1, a[i*lda+i:], lda) 139 bi.Dgemv(blas.NoTrans, n-i, i, -1, w[i*ldw:], ldw, 140 a[i*lda:], 1, 1, a[i*lda+i:], lda) 141 if i < n-1 { 142 // Generate elementary reflector H_i to annihilate A(i+2:n,i). 143 e[i], tau[i] = impl.Dlarfg(n-i-1, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda) 144 a[(i+1)*lda+i] = 1 145 146 // Compute W(i+1:n,i). 147 bi.Dsymv(blas.Lower, n-i-1, 1, a[(i+1)*lda+i+1:], lda, 148 a[(i+1)*lda+i:], lda, 0, w[(i+1)*ldw+i:], ldw) 149 bi.Dgemv(blas.Trans, n-i-1, i, 1, w[(i+1)*ldw:], ldw, 150 a[(i+1)*lda+i:], lda, 0, w[i:], ldw) 151 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, a[(i+1)*lda:], lda, 152 w[i:], ldw, 1, w[(i+1)*ldw+i:], ldw) 153 bi.Dgemv(blas.Trans, n-i-1, i, 1, a[(i+1)*lda:], lda, 154 a[(i+1)*lda+i:], lda, 0, w[i:], ldw) 155 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, w[(i+1)*ldw:], ldw, 156 w[i:], ldw, 1, w[(i+1)*ldw+i:], ldw) 157 bi.Dscal(n-i-1, tau[i], w[(i+1)*ldw+i:], ldw) 158 alpha := -0.5 * tau[i] * bi.Ddot(n-i-1, w[(i+1)*ldw+i:], ldw, 159 a[(i+1)*lda+i:], lda) 160 bi.Daxpy(n-i-1, alpha, a[(i+1)*lda+i:], lda, 161 w[(i+1)*ldw+i:], ldw) 162 } 163 } 164 } 165 }