github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dsterf.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "github.com/jingcheng-WU/gonum/lapack" 11 ) 12 13 // Dsterf computes all eigenvalues of a symmetric tridiagonal matrix using the 14 // Pal-Walker-Kahan variant of the QL or QR algorithm. 15 // 16 // d contains the diagonal elements of the tridiagonal matrix on entry, and 17 // contains the eigenvalues in ascending order on exit. d must have length at 18 // least n, or Dsterf will panic. 19 // 20 // e contains the off-diagonal elements of the tridiagonal matrix on entry, and is 21 // overwritten during the call to Dsterf. e must have length of at least n-1 or 22 // Dsterf will panic. 23 // 24 // Dsterf is an internal routine. It is exported for testing purposes. 25 func (impl Implementation) Dsterf(n int, d, e []float64) (ok bool) { 26 if n < 0 { 27 panic(nLT0) 28 } 29 30 // Quick return if possible. 31 if n == 0 { 32 return true 33 } 34 35 switch { 36 case len(d) < n: 37 panic(shortD) 38 case len(e) < n-1: 39 panic(shortE) 40 } 41 42 if n == 1 { 43 return true 44 } 45 46 const ( 47 none = 0 // The values are not scaled. 48 down = 1 // The values are scaled below ssfmax threshold. 49 up = 2 // The values are scaled below ssfmin threshold. 50 ) 51 52 // Determine the unit roundoff for this environment. 53 eps := dlamchE 54 eps2 := eps * eps 55 safmin := dlamchS 56 safmax := 1 / safmin 57 ssfmax := math.Sqrt(safmax) / 3 58 ssfmin := math.Sqrt(safmin) / eps2 59 60 // Compute the eigenvalues of the tridiagonal matrix. 61 maxit := 30 62 nmaxit := n * maxit 63 jtot := 0 64 65 l1 := 0 66 67 for { 68 if l1 > n-1 { 69 impl.Dlasrt(lapack.SortIncreasing, n, d) 70 return true 71 } 72 if l1 > 0 { 73 e[l1-1] = 0 74 } 75 var m int 76 for m = l1; m < n-1; m++ { 77 if math.Abs(e[m]) <= math.Sqrt(math.Abs(d[m]))*math.Sqrt(math.Abs(d[m+1]))*eps { 78 e[m] = 0 79 break 80 } 81 } 82 83 l := l1 84 lsv := l 85 lend := m 86 lendsv := lend 87 l1 = m + 1 88 if lend == 0 { 89 continue 90 } 91 92 // Scale submatrix in rows and columns l to lend. 93 anorm := impl.Dlanst(lapack.MaxAbs, lend-l+1, d[l:], e[l:]) 94 iscale := none 95 if anorm == 0 { 96 continue 97 } 98 if anorm > ssfmax { 99 iscale = down 100 impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l+1, 1, d[l:], n) 101 impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l, 1, e[l:], n) 102 } else if anorm < ssfmin { 103 iscale = up 104 impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l+1, 1, d[l:], n) 105 impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l, 1, e[l:], n) 106 } 107 108 el := e[l:lend] 109 for i, v := range el { 110 el[i] *= v 111 } 112 113 // Choose between QL and QR iteration. 114 if math.Abs(d[lend]) < math.Abs(d[l]) { 115 lend = lsv 116 l = lendsv 117 } 118 if lend >= l { 119 // QL Iteration. 120 // Look for small sub-diagonal element. 121 for { 122 if l != lend { 123 for m = l; m < lend; m++ { 124 if math.Abs(e[m]) <= eps2*(math.Abs(d[m]*d[m+1])) { 125 break 126 } 127 } 128 } else { 129 m = lend 130 } 131 if m < lend { 132 e[m] = 0 133 } 134 p := d[l] 135 if m == l { 136 // Eigenvalue found. 137 l++ 138 if l > lend { 139 break 140 } 141 continue 142 } 143 // If remaining matrix is 2 by 2, use Dlae2 to compute its eigenvalues. 144 if m == l+1 { 145 d[l], d[l+1] = impl.Dlae2(d[l], math.Sqrt(e[l]), d[l+1]) 146 e[l] = 0 147 l += 2 148 if l > lend { 149 break 150 } 151 continue 152 } 153 if jtot == nmaxit { 154 break 155 } 156 jtot++ 157 158 // Form shift. 159 rte := math.Sqrt(e[l]) 160 sigma := (d[l+1] - p) / (2 * rte) 161 r := impl.Dlapy2(sigma, 1) 162 sigma = p - (rte / (sigma + math.Copysign(r, sigma))) 163 164 c := 1.0 165 s := 0.0 166 gamma := d[m] - sigma 167 p = gamma * gamma 168 169 // Inner loop. 170 for i := m - 1; i >= l; i-- { 171 bb := e[i] 172 r := p + bb 173 if i != m-1 { 174 e[i+1] = s * r 175 } 176 oldc := c 177 c = p / r 178 s = bb / r 179 oldgam := gamma 180 alpha := d[i] 181 gamma = c*(alpha-sigma) - s*oldgam 182 d[i+1] = oldgam + (alpha - gamma) 183 if c != 0 { 184 p = (gamma * gamma) / c 185 } else { 186 p = oldc * bb 187 } 188 } 189 e[l] = s * p 190 d[l] = sigma + gamma 191 } 192 } else { 193 for { 194 // QR Iteration. 195 // Look for small super-diagonal element. 196 for m = l; m > lend; m-- { 197 if math.Abs(e[m-1]) <= eps2*math.Abs(d[m]*d[m-1]) { 198 break 199 } 200 } 201 if m > lend { 202 e[m-1] = 0 203 } 204 p := d[l] 205 if m == l { 206 // Eigenvalue found. 207 l-- 208 if l < lend { 209 break 210 } 211 continue 212 } 213 214 // If remaining matrix is 2 by 2, use Dlae2 to compute its eigenvalues. 215 if m == l-1 { 216 d[l], d[l-1] = impl.Dlae2(d[l], math.Sqrt(e[l-1]), d[l-1]) 217 e[l-1] = 0 218 l -= 2 219 if l < lend { 220 break 221 } 222 continue 223 } 224 if jtot == nmaxit { 225 break 226 } 227 jtot++ 228 229 // Form shift. 230 rte := math.Sqrt(e[l-1]) 231 sigma := (d[l-1] - p) / (2 * rte) 232 r := impl.Dlapy2(sigma, 1) 233 sigma = p - (rte / (sigma + math.Copysign(r, sigma))) 234 235 c := 1.0 236 s := 0.0 237 gamma := d[m] - sigma 238 p = gamma * gamma 239 240 // Inner loop. 241 for i := m; i < l; i++ { 242 bb := e[i] 243 r := p + bb 244 if i != m { 245 e[i-1] = s * r 246 } 247 oldc := c 248 c = p / r 249 s = bb / r 250 oldgam := gamma 251 alpha := d[i+1] 252 gamma = c*(alpha-sigma) - s*oldgam 253 d[i] = oldgam + alpha - gamma 254 if c != 0 { 255 p = (gamma * gamma) / c 256 } else { 257 p = oldc * bb 258 } 259 } 260 e[l-1] = s * p 261 d[l] = sigma + gamma 262 } 263 } 264 265 // Undo scaling if necessary 266 switch iscale { 267 case down: 268 impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv+1, 1, d[lsv:], n) 269 case up: 270 impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv+1, 1, d[lsv:], n) 271 } 272 273 // Check for no convergence to an eigenvalue after a total of n*maxit iterations. 274 if jtot >= nmaxit { 275 break 276 } 277 } 278 for _, v := range e[:n-1] { 279 if v != 0 { 280 return false 281 } 282 } 283 impl.Dlasrt(lapack.SortIncreasing, n, d) 284 return true 285 }