github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/gonum/dtgsja.go (about)

     1  // Copyright ©2017 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/jingcheng-WU/gonum/blas"
    11  	"github.com/jingcheng-WU/gonum/blas/blas64"
    12  	"github.com/jingcheng-WU/gonum/lapack"
    13  )
    14  
    15  // Dtgsja computes the generalized singular value decomposition (GSVD)
    16  // of two real upper triangular or trapezoidal matrices A and B.
    17  //
    18  // A and B have the following forms, which may be obtained by the
    19  // preprocessing subroutine Dggsvp from a general m×n matrix A and p×n
    20  // matrix B:
    21  //
    22  //            n-k-l  k    l
    23  //  A =    k [  0   A12  A13 ] if m-k-l >= 0;
    24  //         l [  0    0   A23 ]
    25  //     m-k-l [  0    0    0  ]
    26  //
    27  //            n-k-l  k    l
    28  //  A =    k [  0   A12  A13 ] if m-k-l < 0;
    29  //       m-k [  0    0   A23 ]
    30  //
    31  //            n-k-l  k    l
    32  //  B =    l [  0    0   B13 ]
    33  //       p-l [  0    0    0  ]
    34  //
    35  // where the k×k matrix A12 and l×l matrix B13 are non-singular
    36  // upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
    37  // otherwise A23 is (m-k)×l upper trapezoidal.
    38  //
    39  // On exit,
    40  //
    41  //  Uᵀ*A*Q = D1*[ 0 R ], Vᵀ*B*Q = D2*[ 0 R ],
    42  //
    43  // where U, V and Q are orthogonal matrices.
    44  // R is a non-singular upper triangular matrix, and D1 and D2 are
    45  // diagonal matrices, which are of the following structures:
    46  //
    47  // If m-k-l >= 0,
    48  //
    49  //                    k  l
    50  //       D1 =     k [ I  0 ]
    51  //                l [ 0  C ]
    52  //            m-k-l [ 0  0 ]
    53  //
    54  //                  k  l
    55  //       D2 = l   [ 0  S ]
    56  //            p-l [ 0  0 ]
    57  //
    58  //               n-k-l  k    l
    59  //  [ 0 R ] = k [  0   R11  R12 ] k
    60  //            l [  0    0   R22 ] l
    61  //
    62  // where
    63  //
    64  //  C = diag( alpha_k, ... , alpha_{k+l} ),
    65  //  S = diag( beta_k,  ... , beta_{k+l} ),
    66  //  C^2 + S^2 = I.
    67  //
    68  // R is stored in
    69  //  A[0:k+l, n-k-l:n]
    70  // on exit.
    71  //
    72  // If m-k-l < 0,
    73  //
    74  //                 k m-k k+l-m
    75  //      D1 =   k [ I  0    0  ]
    76  //           m-k [ 0  C    0  ]
    77  //
    78  //                   k m-k k+l-m
    79  //      D2 =   m-k [ 0  S    0  ]
    80  //           k+l-m [ 0  0    I  ]
    81  //             p-l [ 0  0    0  ]
    82  //
    83  //                 n-k-l  k   m-k  k+l-m
    84  //  [ 0 R ] =    k [ 0    R11  R12  R13 ]
    85  //             m-k [ 0     0   R22  R23 ]
    86  //           k+l-m [ 0     0    0   R33 ]
    87  //
    88  // where
    89  //  C = diag( alpha_k, ... , alpha_m ),
    90  //  S = diag( beta_k,  ... , beta_m ),
    91  //  C^2 + S^2 = I.
    92  //
    93  //  R = [ R11 R12 R13 ] is stored in A[0:m, n-k-l:n]
    94  //      [  0  R22 R23 ]
    95  // and R33 is stored in
    96  //  B[m-k:l, n+m-k-l:n] on exit.
    97  //
    98  // The computation of the orthogonal transformation matrices U, V or Q
    99  // is optional. These matrices may either be formed explicitly, or they
   100  // may be post-multiplied into input matrices U1, V1, or Q1.
   101  //
   102  // Dtgsja essentially uses a variant of Kogbetliantz algorithm to reduce
   103  // min(l,m-k)×l triangular or trapezoidal matrix A23 and l×l
   104  // matrix B13 to the form:
   105  //
   106  //  U1ᵀ*A13*Q1 = C1*R1; V1ᵀ*B13*Q1 = S1*R1,
   107  //
   108  // where U1, V1 and Q1 are orthogonal matrices. C1 and S1 are diagonal
   109  // matrices satisfying
   110  //
   111  //  C1^2 + S1^2 = I,
   112  //
   113  // and R1 is an l×l non-singular upper triangular matrix.
   114  //
   115  // jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
   116  // is as follows
   117  //  jobU == lapack.GSVDU        Compute orthogonal matrix U
   118  //  jobU == lapack.GSVDUnit     Use unit-initialized matrix
   119  //  jobU == lapack.GSVDNone     Do not compute orthogonal matrix.
   120  // The behavior is the same for jobV and jobQ with the exception that instead of
   121  // lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
   122  // The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
   123  // relevant job parameter is lapack.GSVDNone.
   124  //
   125  // k and l specify the sub-blocks in the input matrices A and B:
   126  //  A23 = A[k:min(k+l,m), n-l:n) and B13 = B[0:l, n-l:n]
   127  // of A and B, whose GSVD is going to be computed by Dtgsja.
   128  //
   129  // tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
   130  // iteration procedure. Generally, they are the same as used in the preprocessing
   131  // step, for example,
   132  //  tola = max(m, n)*norm(A)*eps,
   133  //  tolb = max(p, n)*norm(B)*eps,
   134  // where eps is the machine epsilon.
   135  //
   136  // work must have length at least 2*n, otherwise Dtgsja will panic.
   137  //
   138  // alpha and beta must have length n or Dtgsja will panic. On exit, alpha and
   139  // beta contain the generalized singular value pairs of A and B
   140  //   alpha[0:k] = 1,
   141  //   beta[0:k]  = 0,
   142  // if m-k-l >= 0,
   143  //   alpha[k:k+l] = diag(C),
   144  //   beta[k:k+l]  = diag(S),
   145  // if m-k-l < 0,
   146  //   alpha[k:m]= C, alpha[m:k+l]= 0
   147  //   beta[k:m] = S, beta[m:k+l] = 1.
   148  // if k+l < n,
   149  //   alpha[k+l:n] = 0 and
   150  //   beta[k+l:n]  = 0.
   151  //
   152  // On exit, A[n-k:n, 0:min(k+l,m)] contains the triangular matrix R or part of R
   153  // and if necessary, B[m-k:l, n+m-k-l:n] contains a part of R.
   154  //
   155  // Dtgsja returns whether the routine converged and the number of iteration cycles
   156  // that were run.
   157  //
   158  // Dtgsja is an internal routine. It is exported for testing purposes.
   159  func (impl Implementation) Dtgsja(jobU, jobV, jobQ lapack.GSVDJob, m, p, n, k, l int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64) (cycles int, ok bool) {
   160  	const maxit = 40
   161  
   162  	initu := jobU == lapack.GSVDUnit
   163  	wantu := initu || jobU == lapack.GSVDU
   164  
   165  	initv := jobV == lapack.GSVDUnit
   166  	wantv := initv || jobV == lapack.GSVDV
   167  
   168  	initq := jobQ == lapack.GSVDUnit
   169  	wantq := initq || jobQ == lapack.GSVDQ
   170  
   171  	switch {
   172  	case !initu && !wantu && jobU != lapack.GSVDNone:
   173  		panic(badGSVDJob + "U")
   174  	case !initv && !wantv && jobV != lapack.GSVDNone:
   175  		panic(badGSVDJob + "V")
   176  	case !initq && !wantq && jobQ != lapack.GSVDNone:
   177  		panic(badGSVDJob + "Q")
   178  	case m < 0:
   179  		panic(mLT0)
   180  	case p < 0:
   181  		panic(pLT0)
   182  	case n < 0:
   183  		panic(nLT0)
   184  
   185  	case lda < max(1, n):
   186  		panic(badLdA)
   187  	case len(a) < (m-1)*lda+n:
   188  		panic(shortA)
   189  
   190  	case ldb < max(1, n):
   191  		panic(badLdB)
   192  	case len(b) < (p-1)*ldb+n:
   193  		panic(shortB)
   194  
   195  	case len(alpha) != n:
   196  		panic(badLenAlpha)
   197  	case len(beta) != n:
   198  		panic(badLenBeta)
   199  
   200  	case ldu < 1, wantu && ldu < m:
   201  		panic(badLdU)
   202  	case wantu && len(u) < (m-1)*ldu+m:
   203  		panic(shortU)
   204  
   205  	case ldv < 1, wantv && ldv < p:
   206  		panic(badLdV)
   207  	case wantv && len(v) < (p-1)*ldv+p:
   208  		panic(shortV)
   209  
   210  	case ldq < 1, wantq && ldq < n:
   211  		panic(badLdQ)
   212  	case wantq && len(q) < (n-1)*ldq+n:
   213  		panic(shortQ)
   214  
   215  	case len(work) < 2*n:
   216  		panic(shortWork)
   217  	}
   218  
   219  	// Initialize U, V and Q, if necessary
   220  	if initu {
   221  		impl.Dlaset(blas.All, m, m, 0, 1, u, ldu)
   222  	}
   223  	if initv {
   224  		impl.Dlaset(blas.All, p, p, 0, 1, v, ldv)
   225  	}
   226  	if initq {
   227  		impl.Dlaset(blas.All, n, n, 0, 1, q, ldq)
   228  	}
   229  
   230  	bi := blas64.Implementation()
   231  	minTol := math.Min(tola, tolb)
   232  
   233  	// Loop until convergence.
   234  	upper := false
   235  	for cycles = 1; cycles <= maxit; cycles++ {
   236  		upper = !upper
   237  
   238  		for i := 0; i < l-1; i++ {
   239  			for j := i + 1; j < l; j++ {
   240  				var a1, a2, a3 float64
   241  				if k+i < m {
   242  					a1 = a[(k+i)*lda+n-l+i]
   243  				}
   244  				if k+j < m {
   245  					a3 = a[(k+j)*lda+n-l+j]
   246  				}
   247  
   248  				b1 := b[i*ldb+n-l+i]
   249  				b3 := b[j*ldb+n-l+j]
   250  
   251  				var b2 float64
   252  				if upper {
   253  					if k+i < m {
   254  						a2 = a[(k+i)*lda+n-l+j]
   255  					}
   256  					b2 = b[i*ldb+n-l+j]
   257  				} else {
   258  					if k+j < m {
   259  						a2 = a[(k+j)*lda+n-l+i]
   260  					}
   261  					b2 = b[j*ldb+n-l+i]
   262  				}
   263  
   264  				csu, snu, csv, snv, csq, snq := impl.Dlags2(upper, a1, a2, a3, b1, b2, b3)
   265  
   266  				// Update (k+i)-th and (k+j)-th rows of matrix A: Uᵀ*A.
   267  				if k+j < m {
   268  					bi.Drot(l, a[(k+j)*lda+n-l:], 1, a[(k+i)*lda+n-l:], 1, csu, snu)
   269  				}
   270  
   271  				// Update i-th and j-th rows of matrix B: Vᵀ*B.
   272  				bi.Drot(l, b[j*ldb+n-l:], 1, b[i*ldb+n-l:], 1, csv, snv)
   273  
   274  				// Update (n-l+i)-th and (n-l+j)-th columns of matrices
   275  				// A and B: A*Q and B*Q.
   276  				bi.Drot(min(k+l, m), a[n-l+j:], lda, a[n-l+i:], lda, csq, snq)
   277  				bi.Drot(l, b[n-l+j:], ldb, b[n-l+i:], ldb, csq, snq)
   278  
   279  				if upper {
   280  					if k+i < m {
   281  						a[(k+i)*lda+n-l+j] = 0
   282  					}
   283  					b[i*ldb+n-l+j] = 0
   284  				} else {
   285  					if k+j < m {
   286  						a[(k+j)*lda+n-l+i] = 0
   287  					}
   288  					b[j*ldb+n-l+i] = 0
   289  				}
   290  
   291  				// Update orthogonal matrices U, V, Q, if desired.
   292  				if wantu && k+j < m {
   293  					bi.Drot(m, u[k+j:], ldu, u[k+i:], ldu, csu, snu)
   294  				}
   295  				if wantv {
   296  					bi.Drot(p, v[j:], ldv, v[i:], ldv, csv, snv)
   297  				}
   298  				if wantq {
   299  					bi.Drot(n, q[n-l+j:], ldq, q[n-l+i:], ldq, csq, snq)
   300  				}
   301  			}
   302  		}
   303  
   304  		if !upper {
   305  			// The matrices A13 and B13 were lower triangular at the start
   306  			// of the cycle, and are now upper triangular.
   307  			//
   308  			// Convergence test: test the parallelism of the corresponding
   309  			// rows of A and B.
   310  			var error float64
   311  			for i := 0; i < min(l, m-k); i++ {
   312  				bi.Dcopy(l-i, a[(k+i)*lda+n-l+i:], 1, work, 1)
   313  				bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, work[l:], 1)
   314  				ssmin := impl.Dlapll(l-i, work, 1, work[l:], 1)
   315  				error = math.Max(error, ssmin)
   316  			}
   317  			if math.Abs(error) <= minTol {
   318  				// The algorithm has converged.
   319  				// Compute the generalized singular value pairs (alpha, beta)
   320  				// and set the triangular matrix R to array A.
   321  				for i := 0; i < k; i++ {
   322  					alpha[i] = 1
   323  					beta[i] = 0
   324  				}
   325  
   326  				for i := 0; i < min(l, m-k); i++ {
   327  					a1 := a[(k+i)*lda+n-l+i]
   328  					b1 := b[i*ldb+n-l+i]
   329  
   330  					if a1 != 0 {
   331  						gamma := b1 / a1
   332  
   333  						// Change sign if necessary.
   334  						if gamma < 0 {
   335  							bi.Dscal(l-i, -1, b[i*ldb+n-l+i:], 1)
   336  							if wantv {
   337  								bi.Dscal(p, -1, v[i:], ldv)
   338  							}
   339  						}
   340  						beta[k+i], alpha[k+i], _ = impl.Dlartg(math.Abs(gamma), 1)
   341  
   342  						if alpha[k+i] >= beta[k+i] {
   343  							bi.Dscal(l-i, 1/alpha[k+i], a[(k+i)*lda+n-l+i:], 1)
   344  						} else {
   345  							bi.Dscal(l-i, 1/beta[k+i], b[i*ldb+n-l+i:], 1)
   346  							bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
   347  						}
   348  					} else {
   349  						alpha[k+i] = 0
   350  						beta[k+i] = 1
   351  						bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
   352  					}
   353  				}
   354  
   355  				for i := m; i < k+l; i++ {
   356  					alpha[i] = 0
   357  					beta[i] = 1
   358  				}
   359  				if k+l < n {
   360  					for i := k + l; i < n; i++ {
   361  						alpha[i] = 0
   362  						beta[i] = 0
   363  					}
   364  				}
   365  
   366  				return cycles, true
   367  			}
   368  		}
   369  	}
   370  
   371  	// The algorithm has not converged after maxit cycles.
   372  	return cycles, false
   373  }