github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/lapack/testlapack/dlansy.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package testlapack 6 7 import ( 8 "math" 9 "testing" 10 11 "golang.org/x/exp/rand" 12 13 "github.com/jingcheng-WU/gonum/blas" 14 "github.com/jingcheng-WU/gonum/lapack" 15 ) 16 17 type Dlansyer interface { 18 Dlanger 19 Dlansy(norm lapack.MatrixNorm, uplo blas.Uplo, n int, a []float64, lda int, work []float64) float64 20 } 21 22 func DlansyTest(t *testing.T, impl Dlansyer) { 23 rnd := rand.New(rand.NewSource(1)) 24 for _, norm := range []lapack.MatrixNorm{lapack.MaxAbs, lapack.MaxColumnSum, lapack.MaxRowSum, lapack.Frobenius} { 25 for _, uplo := range []blas.Uplo{blas.Lower, blas.Upper} { 26 for _, test := range []struct { 27 n, lda int 28 }{ 29 {1, 0}, 30 {3, 0}, 31 32 {1, 10}, 33 {3, 10}, 34 } { 35 for trial := 0; trial < 100; trial++ { 36 n := test.n 37 lda := test.lda 38 if lda == 0 { 39 lda = n 40 } 41 // Allocate n×n matrix A and fill it. 42 // Only the uplo triangle of A will be used below 43 // to represent a symmetric matrix. 44 a := make([]float64, lda*n) 45 if trial == 0 { 46 // In the first trial fill the matrix 47 // with predictable integers. 48 for i := range a { 49 a[i] = float64(i) 50 } 51 } else { 52 // Otherwise fill it with random numbers. 53 for i := range a { 54 a[i] = rnd.NormFloat64() 55 } 56 } 57 58 // Create a dense representation of the symmetric matrix 59 // stored in the uplo triangle of A. 60 aDense := make([]float64, n*n) 61 if uplo == blas.Upper { 62 for i := 0; i < n; i++ { 63 for j := i; j < n; j++ { 64 v := a[i*lda+j] 65 aDense[i*n+j] = v 66 aDense[j*n+i] = v 67 } 68 } 69 } else { 70 for i := 0; i < n; i++ { 71 for j := 0; j <= i; j++ { 72 v := a[i*lda+j] 73 aDense[i*n+j] = v 74 aDense[j*n+i] = v 75 } 76 } 77 } 78 79 work := make([]float64, n) 80 // Compute the norm of the symmetric matrix A. 81 got := impl.Dlansy(norm, uplo, n, a, lda, work) 82 // Compute the reference norm value using Dlange 83 // and the dense representation of A. 84 want := impl.Dlange(norm, n, n, aDense, n, work) 85 if math.Abs(want-got) > 1e-14 { 86 t.Errorf("Norm mismatch. norm = %c, upper = %v, n = %v, lda = %v, want %v, got %v.", 87 norm, uplo == blas.Upper, n, lda, got, want) 88 } 89 } 90 } 91 } 92 } 93 }