github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/mat/lu.go (about)

     1  // Copyright ©2013 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package mat
     6  
     7  import (
     8  	"math"
     9  
    10  	"github.com/jingcheng-WU/gonum/blas"
    11  	"github.com/jingcheng-WU/gonum/blas/blas64"
    12  	"github.com/jingcheng-WU/gonum/floats"
    13  	"github.com/jingcheng-WU/gonum/lapack"
    14  	"github.com/jingcheng-WU/gonum/lapack/lapack64"
    15  )
    16  
    17  const (
    18  	badSliceLength = "mat: improper slice length"
    19  	badLU          = "mat: invalid LU factorization"
    20  )
    21  
    22  // LU is a type for creating and using the LU factorization of a matrix.
    23  type LU struct {
    24  	lu    *Dense
    25  	pivot []int
    26  	cond  float64
    27  }
    28  
    29  // updateCond updates the stored condition number of the matrix. anorm is the
    30  // norm of the original matrix. If anorm is negative it will be estimated.
    31  func (lu *LU) updateCond(anorm float64, norm lapack.MatrixNorm) {
    32  	n := lu.lu.mat.Cols
    33  	work := getFloats(4*n, false)
    34  	defer putFloats(work)
    35  	iwork := getInts(n, false)
    36  	defer putInts(iwork)
    37  	if anorm < 0 {
    38  		// This is an approximation. By the definition of a norm,
    39  		//  |AB| <= |A| |B|.
    40  		// Since A = L*U, we get for the condition number κ that
    41  		//  κ(A) := |A| |A^-1| = |L*U| |A^-1| <= |L| |U| |A^-1|,
    42  		// so this will overestimate the condition number somewhat.
    43  		// The norm of the original factorized matrix cannot be stored
    44  		// because of update possibilities.
    45  		u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
    46  		l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
    47  		unorm := lapack64.Lantr(norm, u.mat, work)
    48  		lnorm := lapack64.Lantr(norm, l.mat, work)
    49  		anorm = unorm * lnorm
    50  	}
    51  	v := lapack64.Gecon(norm, lu.lu.mat, anorm, work, iwork)
    52  	lu.cond = 1 / v
    53  }
    54  
    55  // Factorize computes the LU factorization of the square matrix a and stores the
    56  // result. The LU decomposition will complete regardless of the singularity of a.
    57  //
    58  // The LU factorization is computed with pivoting, and so really the decomposition
    59  // is a PLU decomposition where P is a permutation matrix. The individual matrix
    60  // factors can be extracted from the factorization using the Permutation method
    61  // on Dense, and the LU.LTo and LU.UTo methods.
    62  func (lu *LU) Factorize(a Matrix) {
    63  	lu.factorize(a, CondNorm)
    64  }
    65  
    66  func (lu *LU) factorize(a Matrix, norm lapack.MatrixNorm) {
    67  	r, c := a.Dims()
    68  	if r != c {
    69  		panic(ErrSquare)
    70  	}
    71  	if lu.lu == nil {
    72  		lu.lu = NewDense(r, r, nil)
    73  	} else {
    74  		lu.lu.Reset()
    75  		lu.lu.reuseAsNonZeroed(r, r)
    76  	}
    77  	lu.lu.Copy(a)
    78  	if cap(lu.pivot) < r {
    79  		lu.pivot = make([]int, r)
    80  	}
    81  	lu.pivot = lu.pivot[:r]
    82  	work := getFloats(r, false)
    83  	anorm := lapack64.Lange(norm, lu.lu.mat, work)
    84  	putFloats(work)
    85  	lapack64.Getrf(lu.lu.mat, lu.pivot)
    86  	lu.updateCond(anorm, norm)
    87  }
    88  
    89  // isValid returns whether the receiver contains a factorization.
    90  func (lu *LU) isValid() bool {
    91  	return lu.lu != nil && !lu.lu.IsEmpty()
    92  }
    93  
    94  // Cond returns the condition number for the factorized matrix.
    95  // Cond will panic if the receiver does not contain a factorization.
    96  func (lu *LU) Cond() float64 {
    97  	if !lu.isValid() {
    98  		panic(badLU)
    99  	}
   100  	return lu.cond
   101  }
   102  
   103  // Reset resets the factorization so that it can be reused as the receiver of a
   104  // dimensionally restricted operation.
   105  func (lu *LU) Reset() {
   106  	if lu.lu != nil {
   107  		lu.lu.Reset()
   108  	}
   109  	lu.pivot = lu.pivot[:0]
   110  }
   111  
   112  func (lu *LU) isZero() bool {
   113  	return len(lu.pivot) == 0
   114  }
   115  
   116  // Det returns the determinant of the matrix that has been factorized. In many
   117  // expressions, using LogDet will be more numerically stable.
   118  // Det will panic if the receiver does not contain a factorization.
   119  func (lu *LU) Det() float64 {
   120  	det, sign := lu.LogDet()
   121  	return math.Exp(det) * sign
   122  }
   123  
   124  // LogDet returns the log of the determinant and the sign of the determinant
   125  // for the matrix that has been factorized. Numerical stability in product and
   126  // division expressions is generally improved by working in log space.
   127  // LogDet will panic if the receiver does not contain a factorization.
   128  func (lu *LU) LogDet() (det float64, sign float64) {
   129  	if !lu.isValid() {
   130  		panic(badLU)
   131  	}
   132  
   133  	_, n := lu.lu.Dims()
   134  	logDiag := getFloats(n, false)
   135  	defer putFloats(logDiag)
   136  	sign = 1.0
   137  	for i := 0; i < n; i++ {
   138  		v := lu.lu.at(i, i)
   139  		if v < 0 {
   140  			sign *= -1
   141  		}
   142  		if lu.pivot[i] != i {
   143  			sign *= -1
   144  		}
   145  		logDiag[i] = math.Log(math.Abs(v))
   146  	}
   147  	return floats.Sum(logDiag), sign
   148  }
   149  
   150  // Pivot returns pivot indices that enable the construction of the permutation
   151  // matrix P (see Dense.Permutation). If swaps == nil, then new memory will be
   152  // allocated, otherwise the length of the input must be equal to the size of the
   153  // factorized matrix.
   154  // Pivot will panic if the receiver does not contain a factorization.
   155  func (lu *LU) Pivot(swaps []int) []int {
   156  	if !lu.isValid() {
   157  		panic(badLU)
   158  	}
   159  
   160  	_, n := lu.lu.Dims()
   161  	if swaps == nil {
   162  		swaps = make([]int, n)
   163  	}
   164  	if len(swaps) != n {
   165  		panic(badSliceLength)
   166  	}
   167  	// Perform the inverse of the row swaps in order to find the final
   168  	// row swap position.
   169  	for i := range swaps {
   170  		swaps[i] = i
   171  	}
   172  	for i := n - 1; i >= 0; i-- {
   173  		v := lu.pivot[i]
   174  		swaps[i], swaps[v] = swaps[v], swaps[i]
   175  	}
   176  	return swaps
   177  }
   178  
   179  // RankOne updates an LU factorization as if a rank-one update had been applied to
   180  // the original matrix A, storing the result into the receiver. That is, if in
   181  // the original LU decomposition P * L * U = A, in the updated decomposition
   182  // P * L * U = A + alpha * x * yᵀ.
   183  // RankOne will panic if orig does not contain a factorization.
   184  func (lu *LU) RankOne(orig *LU, alpha float64, x, y Vector) {
   185  	if !orig.isValid() {
   186  		panic(badLU)
   187  	}
   188  
   189  	// RankOne uses algorithm a1 on page 28 of "Multiple-Rank Updates to Matrix
   190  	// Factorizations for Nonlinear Analysis and Circuit Design" by Linzhong Deng.
   191  	// http://web.stanford.edu/group/SOL/dissertations/Linzhong-Deng-thesis.pdf
   192  	_, n := orig.lu.Dims()
   193  	if r, c := x.Dims(); r != n || c != 1 {
   194  		panic(ErrShape)
   195  	}
   196  	if r, c := y.Dims(); r != n || c != 1 {
   197  		panic(ErrShape)
   198  	}
   199  	if orig != lu {
   200  		if lu.isZero() {
   201  			if cap(lu.pivot) < n {
   202  				lu.pivot = make([]int, n)
   203  			}
   204  			lu.pivot = lu.pivot[:n]
   205  			if lu.lu == nil {
   206  				lu.lu = NewDense(n, n, nil)
   207  			} else {
   208  				lu.lu.reuseAsNonZeroed(n, n)
   209  			}
   210  		} else if len(lu.pivot) != n {
   211  			panic(ErrShape)
   212  		}
   213  		copy(lu.pivot, orig.pivot)
   214  		lu.lu.Copy(orig.lu)
   215  	}
   216  
   217  	xs := getFloats(n, false)
   218  	defer putFloats(xs)
   219  	ys := getFloats(n, false)
   220  	defer putFloats(ys)
   221  	for i := 0; i < n; i++ {
   222  		xs[i] = x.AtVec(i)
   223  		ys[i] = y.AtVec(i)
   224  	}
   225  
   226  	// Adjust for the pivoting in the LU factorization
   227  	for i, v := range lu.pivot {
   228  		xs[i], xs[v] = xs[v], xs[i]
   229  	}
   230  
   231  	lum := lu.lu.mat
   232  	omega := alpha
   233  	for j := 0; j < n; j++ {
   234  		ujj := lum.Data[j*lum.Stride+j]
   235  		ys[j] /= ujj
   236  		theta := 1 + xs[j]*ys[j]*omega
   237  		beta := omega * ys[j] / theta
   238  		gamma := omega * xs[j]
   239  		omega -= beta * gamma
   240  		lum.Data[j*lum.Stride+j] *= theta
   241  		for i := j + 1; i < n; i++ {
   242  			xs[i] -= lum.Data[i*lum.Stride+j] * xs[j]
   243  			tmp := ys[i]
   244  			ys[i] -= lum.Data[j*lum.Stride+i] * ys[j]
   245  			lum.Data[i*lum.Stride+j] += beta * xs[i]
   246  			lum.Data[j*lum.Stride+i] += gamma * tmp
   247  		}
   248  	}
   249  	lu.updateCond(-1, CondNorm)
   250  }
   251  
   252  // LTo extracts the lower triangular matrix from an LU factorization.
   253  //
   254  // If dst is empty, LTo will resize dst to be a lower-triangular n×n matrix.
   255  // When dst is non-empty, LTo will panic if dst is not n×n or not Lower.
   256  // LTo will also panic if the receiver does not contain a successful
   257  // factorization.
   258  func (lu *LU) LTo(dst *TriDense) *TriDense {
   259  	if !lu.isValid() {
   260  		panic(badLU)
   261  	}
   262  
   263  	_, n := lu.lu.Dims()
   264  	if dst.IsEmpty() {
   265  		dst.ReuseAsTri(n, Lower)
   266  	} else {
   267  		n2, kind := dst.Triangle()
   268  		if n != n2 {
   269  			panic(ErrShape)
   270  		}
   271  		if kind != Lower {
   272  			panic(ErrTriangle)
   273  		}
   274  	}
   275  	// Extract the lower triangular elements.
   276  	for i := 0; i < n; i++ {
   277  		for j := 0; j < i; j++ {
   278  			dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
   279  		}
   280  	}
   281  	// Set ones on the diagonal.
   282  	for i := 0; i < n; i++ {
   283  		dst.mat.Data[i*dst.mat.Stride+i] = 1
   284  	}
   285  	return dst
   286  }
   287  
   288  // UTo extracts the upper triangular matrix from an LU factorization.
   289  //
   290  // If dst is empty, UTo will resize dst to be an upper-triangular n×n matrix.
   291  // When dst is non-empty, UTo will panic if dst is not n×n or not Upper.
   292  // UTo will also panic if the receiver does not contain a successful
   293  // factorization.
   294  func (lu *LU) UTo(dst *TriDense) {
   295  	if !lu.isValid() {
   296  		panic(badLU)
   297  	}
   298  
   299  	_, n := lu.lu.Dims()
   300  	if dst.IsEmpty() {
   301  		dst.ReuseAsTri(n, Upper)
   302  	} else {
   303  		n2, kind := dst.Triangle()
   304  		if n != n2 {
   305  			panic(ErrShape)
   306  		}
   307  		if kind != Upper {
   308  			panic(ErrTriangle)
   309  		}
   310  	}
   311  	// Extract the upper triangular elements.
   312  	for i := 0; i < n; i++ {
   313  		for j := i; j < n; j++ {
   314  			dst.mat.Data[i*dst.mat.Stride+j] = lu.lu.mat.Data[i*lu.lu.mat.Stride+j]
   315  		}
   316  	}
   317  }
   318  
   319  // Permutation constructs an r×r permutation matrix with the given row swaps.
   320  // A permutation matrix has exactly one element equal to one in each row and column
   321  // and all other elements equal to zero. swaps[i] specifies the row with which
   322  // i will be swapped, which is equivalent to the non-zero column of row i.
   323  func (m *Dense) Permutation(r int, swaps []int) {
   324  	m.reuseAsNonZeroed(r, r)
   325  	for i := 0; i < r; i++ {
   326  		zero(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+r])
   327  		v := swaps[i]
   328  		if v < 0 || v >= r {
   329  			panic(ErrRowAccess)
   330  		}
   331  		m.mat.Data[i*m.mat.Stride+v] = 1
   332  	}
   333  }
   334  
   335  // SolveTo solves a system of linear equations using the LU decomposition of a matrix.
   336  // It computes
   337  //  A * X = B if trans == false
   338  //  Aᵀ * X = B if trans == true
   339  // In both cases, A is represented in LU factorized form, and the matrix X is
   340  // stored into dst.
   341  //
   342  // If A is singular or near-singular a Condition error is returned. See
   343  // the documentation for Condition for more information.
   344  // SolveTo will panic if the receiver does not contain a factorization.
   345  func (lu *LU) SolveTo(dst *Dense, trans bool, b Matrix) error {
   346  	if !lu.isValid() {
   347  		panic(badLU)
   348  	}
   349  
   350  	_, n := lu.lu.Dims()
   351  	br, bc := b.Dims()
   352  	if br != n {
   353  		panic(ErrShape)
   354  	}
   355  	// TODO(btracey): Should test the condition number instead of testing that
   356  	// the determinant is exactly zero.
   357  	if lu.Det() == 0 {
   358  		return Condition(math.Inf(1))
   359  	}
   360  
   361  	dst.reuseAsNonZeroed(n, bc)
   362  	bU, _ := untranspose(b)
   363  	var restore func()
   364  	if dst == bU {
   365  		dst, restore = dst.isolatedWorkspace(bU)
   366  		defer restore()
   367  	} else if rm, ok := bU.(RawMatrixer); ok {
   368  		dst.checkOverlap(rm.RawMatrix())
   369  	}
   370  
   371  	dst.Copy(b)
   372  	t := blas.NoTrans
   373  	if trans {
   374  		t = blas.Trans
   375  	}
   376  	lapack64.Getrs(t, lu.lu.mat, dst.mat, lu.pivot)
   377  	if lu.cond > ConditionTolerance {
   378  		return Condition(lu.cond)
   379  	}
   380  	return nil
   381  }
   382  
   383  // SolveVecTo solves a system of linear equations using the LU decomposition of a matrix.
   384  // It computes
   385  //  A * x = b if trans == false
   386  //  Aᵀ * x = b if trans == true
   387  // In both cases, A is represented in LU factorized form, and the vector x is
   388  // stored into dst.
   389  //
   390  // If A is singular or near-singular a Condition error is returned. See
   391  // the documentation for Condition for more information.
   392  // SolveVecTo will panic if the receiver does not contain a factorization.
   393  func (lu *LU) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
   394  	if !lu.isValid() {
   395  		panic(badLU)
   396  	}
   397  
   398  	_, n := lu.lu.Dims()
   399  	if br, bc := b.Dims(); br != n || bc != 1 {
   400  		panic(ErrShape)
   401  	}
   402  	switch rv := b.(type) {
   403  	default:
   404  		dst.reuseAsNonZeroed(n)
   405  		return lu.SolveTo(dst.asDense(), trans, b)
   406  	case RawVectorer:
   407  		if dst != b {
   408  			dst.checkOverlap(rv.RawVector())
   409  		}
   410  		// TODO(btracey): Should test the condition number instead of testing that
   411  		// the determinant is exactly zero.
   412  		if lu.Det() == 0 {
   413  			return Condition(math.Inf(1))
   414  		}
   415  
   416  		dst.reuseAsNonZeroed(n)
   417  		var restore func()
   418  		if dst == b {
   419  			dst, restore = dst.isolatedWorkspace(b)
   420  			defer restore()
   421  		}
   422  		dst.CopyVec(b)
   423  		vMat := blas64.General{
   424  			Rows:   n,
   425  			Cols:   1,
   426  			Stride: dst.mat.Inc,
   427  			Data:   dst.mat.Data,
   428  		}
   429  		t := blas.NoTrans
   430  		if trans {
   431  			t = blas.Trans
   432  		}
   433  		lapack64.Getrs(t, lu.lu.mat, vMat, lu.pivot)
   434  		if lu.cond > ConditionTolerance {
   435  			return Condition(lu.cond)
   436  		}
   437  		return nil
   438  	}
   439  }