github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/mathext/internal/amos/amoslib/zairy.f (about)

     1        SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
     2  C***BEGIN PROLOGUE  ZAIRY
     3  C***DATE WRITTEN   830501   (YYMMDD)
     4  C***REVISION DATE  890801   (YYMMDD)
     5  C***CATEGORY NO.  B5K
     6  C***KEYWORDS  AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
     7  C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
     8  C***PURPOSE  TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
     9  C***DESCRIPTION
    10  C
    11  C                      ***A DOUBLE PRECISION ROUTINE***
    12  C         ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
    13  C         ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
    14  C         KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
    15  C         DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
    16  C         -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN
    17  C         PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
    18  C
    19  C         WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
    20  C         THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
    21  C         FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
    22  C         DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
    23  C         MATHEMATICAL FUNCTIONS (REF. 1).
    24  C
    25  C         INPUT      ZR,ZI ARE DOUBLE PRECISION
    26  C           ZR,ZI  - Z=CMPLX(ZR,ZI)
    27  C           ID     - ORDER OF DERIVATIVE, ID=0 OR ID=1
    28  C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
    29  C                    KODE= 1  RETURNS
    30  C                             AI=AI(Z)                ON ID=0 OR
    31  C                             AI=DAI(Z)/DZ            ON ID=1
    32  C                        = 2  RETURNS
    33  C                             AI=CEXP(ZTA)*AI(Z)       ON ID=0 OR
    34  C                             AI=CEXP(ZTA)*DAI(Z)/DZ   ON ID=1 WHERE
    35  C                             ZTA=(2/3)*Z*CSQRT(Z)
    36  C
    37  C         OUTPUT     AIR,AII ARE DOUBLE PRECISION
    38  C           AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
    39  C                    KODE
    40  C           NZ     - UNDERFLOW INDICATOR
    41  C                    NZ= 0   , NORMAL RETURN
    42  C                    NZ= 1   , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN
    43  C                              -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1
    44  C           IERR   - ERROR FLAG
    45  C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
    46  C                    IERR=1, INPUT ERROR   - NO COMPUTATION
    47  C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(ZTA)
    48  C                            TOO LARGE ON KODE=1
    49  C                    IERR=3, CABS(Z) LARGE      - COMPUTATION COMPLETED
    50  C                            LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
    51  C                            PRODUCE LESS THAN HALF OF MACHINE ACCURACY
    52  C                    IERR=4, CABS(Z) TOO LARGE  - NO COMPUTATION
    53  C                            COMPLETE LOSS OF ACCURACY BY ARGUMENT
    54  C                            REDUCTION
    55  C                    IERR=5, ERROR              - NO COMPUTATION,
    56  C                            ALGORITHM TERMINATION CONDITION NOT MET
    57  C
    58  C***LONG DESCRIPTION
    59  C
    60  C         AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL
    61  C         FUNCTIONS BY
    62  C
    63  C            AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
    64  C                           C=1.0/(PI*SQRT(3.0))
    65  C                            ZTA=(2/3)*Z**(3/2)
    66  C
    67  C         WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
    68  C
    69  C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
    70  C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
    71  C         OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
    72  C         THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
    73  C         THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
    74  C         FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
    75  C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
    76  C         ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
    77  C         ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
    78  C         FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
    79  C         LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
    80  C         MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
    81  C         AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
    82  C         PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
    83  C         PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
    84  C         ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
    85  C         NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
    86  C         DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
    87  C         EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
    88  C         NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
    89  C         PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
    90  C         MACHINES.
    91  C
    92  C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
    93  C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
    94  C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
    95  C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
    96  C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
    97  C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
    98  C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
    99  C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
   100  C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
   101  C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
   102  C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
   103  C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
   104  C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
   105  C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
   106  C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
   107  C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
   108  C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
   109  C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
   110  C         OR -PI/2+P.
   111  C
   112  C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
   113  C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
   114  C                 COMMERCE, 1955.
   115  C
   116  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   117  C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
   118  C
   119  C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   120  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
   121  C                 1018, MAY, 1985
   122  C
   123  C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   124  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
   125  C                 MATH. SOFTWARE, 1986
   126  C
   127  C***ROUTINES CALLED  ZACAI,ZBKNU,ZEXP,ZSQRT,I1MACH,D1MACH
   128  C***END PROLOGUE  ZAIRY
   129  C     COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
   130        DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
   131       * CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
   132       * DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
   133       * S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
   134       * ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS, ALAZ, BB
   135        INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
   136        DIMENSION CYR(1), CYI(1)
   137        DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
   138       * 3.55028053887817240D-01,2.58819403792806799D-01,
   139       * 1.83776298473930683D-01/
   140        DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
   141  C***FIRST EXECUTABLE STATEMENT  ZAIRY
   142        IERR = 0
   143        NZ=0
   144        IF (ID.LT.0 .OR. ID.GT.1) IERR=1
   145        IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
   146        IF (IERR.NE.0) RETURN
   147        AZ = ZABS(CMPLX(ZR,ZI,kind=KIND(1.0D0)))
   148        TOL = DMAX1(D1MACH(4),1.0D-18)
   149        FID = DBLE(FLOAT(ID))
   150        IF (AZ.GT.1.0D0) GO TO 70
   151  C-----------------------------------------------------------------------
   152  C     POWER SERIES FOR CABS(Z).LE.1.
   153  C-----------------------------------------------------------------------
   154        S1R = CONER
   155        S1I = CONEI
   156        S2R = CONER
   157        S2I = CONEI
   158        IF (AZ.LT.TOL) GO TO 170
   159        AA = AZ*AZ
   160        IF (AA.LT.TOL/AZ) GO TO 40
   161        TRM1R = CONER
   162        TRM1I = CONEI
   163        TRM2R = CONER
   164        TRM2I = CONEI
   165        ATRM = 1.0D0
   166        STR = ZR*ZR - ZI*ZI
   167        STI = ZR*ZI + ZI*ZR
   168        Z3R = STR*ZR - STI*ZI
   169        Z3I = STR*ZI + STI*ZR
   170        AZ3 = AZ*AA
   171        AK = 2.0D0 + FID
   172        BK = 3.0D0 - FID - FID
   173        CK = 4.0D0 - FID
   174        DK = 3.0D0 + FID + FID
   175        D1 = AK*DK
   176        D2 = BK*CK
   177        AD = DMIN1(D1,D2)
   178        AK = 24.0D0 + 9.0D0*FID
   179        BK = 30.0D0 - 9.0D0*FID
   180        DO 30 K=1,25
   181          STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
   182          TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
   183          TRM1R = STR
   184          S1R = S1R + TRM1R
   185          S1I = S1I + TRM1I
   186          STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
   187          TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
   188          TRM2R = STR
   189          S2R = S2R + TRM2R
   190          S2I = S2I + TRM2I
   191          ATRM = ATRM*AZ3/AD
   192          D1 = D1 + AK
   193          D2 = D2 + BK
   194          AD = DMIN1(D1,D2)
   195          IF (ATRM.LT.TOL*AD) GO TO 40
   196          AK = AK + 18.0D0
   197          BK = BK + 18.0D0
   198     30 CONTINUE
   199     40 CONTINUE
   200        IF (ID.EQ.1) THEN
   201          GO TO 50
   202        END IF
   203        AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
   204        AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
   205        IF (KODE.EQ.1) RETURN
   206        CALL ZSQRT(ZR, ZI, STR, STI)
   207        ZTAR = TTH*(ZR*STR-ZI*STI)
   208        ZTAI = TTH*(ZR*STI+ZI*STR)
   209        CALL ZEXP(ZTAR, ZTAI, STR, STI)
   210        PTR = AIR*STR - AII*STI
   211        AII = AIR*STI + AII*STR
   212        AIR = PTR
   213        RETURN
   214     50 CONTINUE
   215        AIR = -S2R*C2
   216        AII = -S2I*C2
   217        IF (AZ.LE.TOL) GO TO 60
   218        STR = ZR*S1R - ZI*S1I
   219        STI = ZR*S1I + ZI*S1R
   220        CC = C1/(1.0D0+FID)
   221        AIR = AIR + CC*(STR*ZR-STI*ZI)
   222        AII = AII + CC*(STR*ZI+STI*ZR)
   223     60 CONTINUE
   224        IF (KODE.EQ.1) RETURN
   225        CALL ZSQRT(ZR, ZI, STR, STI)
   226        ZTAR = TTH*(ZR*STR-ZI*STI)
   227        ZTAI = TTH*(ZR*STI+ZI*STR)
   228        CALL ZEXP(ZTAR, ZTAI, STR, STI)
   229        PTR = STR*AIR - STI*AII
   230        AII = STR*AII + STI*AIR
   231        AIR = PTR
   232        RETURN
   233  C-----------------------------------------------------------------------
   234  C     CASE FOR CABS(Z).GT.1.0
   235  C-----------------------------------------------------------------------
   236     70 CONTINUE
   237        FNU = (1.0D0+FID)/3.0D0
   238  C-----------------------------------------------------------------------
   239  C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
   240  C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
   241  C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
   242  C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
   243  C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
   244  C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
   245  C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
   246  C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
   247  C-----------------------------------------------------------------------
   248        K1 = I1MACH(15)
   249        K2 = I1MACH(16)
   250        R1M5 = D1MACH(5)
   251        K = MIN0(IABS(K1),IABS(K2))
   252        ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
   253        K1 = I1MACH(14) - 1
   254        AA = R1M5*DBLE(FLOAT(K1))
   255        DIG = DMIN1(AA,18.0D0)
   256        AA = AA*2.303D0
   257        ALIM = ELIM + DMAX1(-AA,-41.45D0)
   258        RL = 1.2D0*DIG + 3.0D0
   259        ALAZ = DLOG(AZ)
   260  C--------------------------------------------------------------------------
   261  C     TEST FOR PROPER RANGE
   262  C-----------------------------------------------------------------------
   263        AA=0.5D0/TOL
   264        BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
   265        AA=DMIN1(AA,BB)
   266        AA=AA**TTH
   267        IF (AZ.GT.AA) GO TO 260
   268        AA=DSQRT(AA)
   269        IF (AZ.GT.AA) IERR=3
   270        CALL ZSQRT(ZR, ZI, CSQR, CSQI)
   271        ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
   272        ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
   273  C-----------------------------------------------------------------------
   274  C     RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
   275  C-----------------------------------------------------------------------
   276        IFLAG = 0
   277        SFAC = 1.0D0
   278        AK = ZTAI
   279        IF (ZR.GE.0.0D0) GO TO 80
   280        BK = ZTAR
   281        CK = -DABS(BK)
   282        ZTAR = CK
   283        ZTAI = AK
   284     80 CONTINUE
   285        IF (ZI.NE.0.0D0) GO TO 90
   286        IF (ZR.GT.0.0D0) GO TO 90
   287        ZTAR = 0.0D0
   288        ZTAI = AK
   289     90 CONTINUE
   290        AA = ZTAR
   291        IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
   292        IF (KODE.EQ.2) GO TO 100
   293  C-----------------------------------------------------------------------
   294  C     OVERFLOW TEST
   295  C-----------------------------------------------------------------------
   296        IF (AA.GT.(-ALIM)) GO TO 100
   297        AA = -AA + 0.25D0*ALAZ
   298        IFLAG = 1
   299        SFAC = TOL
   300        IF (AA.GT.ELIM) GO TO 270
   301    100 CONTINUE
   302  C-----------------------------------------------------------------------
   303  C     CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
   304  C-----------------------------------------------------------------------
   305        MR = 1
   306        IF (ZI.LT.0.0D0) MR = -1
   307        CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
   308       * ELIM, ALIM)
   309        IF (NN.LT.0) GO TO 280
   310        NZ = NZ + NN
   311        GO TO 130
   312    110 CONTINUE
   313        IF (KODE.EQ.2) GO TO 120
   314  C-----------------------------------------------------------------------
   315  C     UNDERFLOW TEST
   316  C-----------------------------------------------------------------------
   317        IF (AA.LT.ALIM) GO TO 120
   318        AA = -AA - 0.25D0*ALAZ
   319        IFLAG = 2
   320        SFAC = 1.0D0/TOL
   321        IF (AA.LT.(-ELIM)) GO TO 210
   322    120 CONTINUE
   323        CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
   324       * ALIM)
   325    130 CONTINUE
   326        S1R = CYR(1)*COEF
   327        S1I = CYI(1)*COEF
   328        IF (IFLAG.NE.0) GO TO 150
   329        IF (ID.EQ.1) GO TO 140
   330        AIR = CSQR*S1R - CSQI*S1I
   331        AII = CSQR*S1I + CSQI*S1R
   332        RETURN
   333    140 CONTINUE
   334        AIR = -(ZR*S1R-ZI*S1I)
   335        AII = -(ZR*S1I+ZI*S1R)
   336        RETURN
   337    150 CONTINUE
   338        S1R = S1R*SFAC
   339        S1I = S1I*SFAC
   340        IF (ID.EQ.1) GO TO 160
   341        STR = S1R*CSQR - S1I*CSQI
   342        S1I = S1R*CSQI + S1I*CSQR
   343        S1R = STR
   344        AIR = S1R/SFAC
   345        AII = S1I/SFAC
   346        RETURN
   347    160 CONTINUE
   348        STR = -(S1R*ZR-S1I*ZI)
   349        S1I = -(S1R*ZI+S1I*ZR)
   350        S1R = STR
   351        AIR = S1R/SFAC
   352        AII = S1I/SFAC
   353        RETURN
   354    170 CONTINUE
   355        AA = 1.0D+3*D1MACH(1)
   356        S1R = ZEROR
   357        S1I = ZEROI
   358        IF (ID.EQ.1) GO TO 190
   359        IF (AZ.LE.AA) GO TO 180
   360        S1R = C2*ZR
   361        S1I = C2*ZI
   362    180 CONTINUE
   363        AIR = C1 - S1R
   364        AII = -S1I
   365        RETURN
   366    190 CONTINUE
   367        AIR = -C2
   368        AII = 0.0D0
   369        AA = DSQRT(AA)
   370        IF (AZ.LE.AA) GO TO 200
   371        S1R = 0.5D0*(ZR*ZR-ZI*ZI)
   372        S1I = ZR*ZI
   373    200 CONTINUE
   374        AIR = AIR + C1*S1R
   375        AII = AII + C1*S1I
   376        RETURN
   377    210 CONTINUE
   378        NZ = 1
   379        AIR = ZEROR
   380        AII = ZEROI
   381        RETURN
   382    270 CONTINUE
   383        NZ = 0
   384        IERR=2
   385        RETURN
   386    280 CONTINUE
   387        IF(NN.EQ.(-1)) GO TO 270
   388        NZ=0
   389        IERR=5
   390        RETURN
   391    260 CONTINUE
   392        IERR=4
   393        NZ=0
   394        RETURN
   395        END