github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/mathext/internal/amos/amoslib/zbesi.f (about)

     1        SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
     2  C***BEGIN PROLOGUE  ZBESI
     3  C***DATE WRITTEN   830501   (YYMMDD)
     4  C***REVISION DATE  890801   (YYMMDD)
     5  C***CATEGORY NO.  B5K
     6  C***KEYWORDS  I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
     7  C             MODIFIED BESSEL FUNCTION OF THE FIRST KIND
     8  C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
     9  C***PURPOSE  TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
    10  C***DESCRIPTION
    11  C
    12  C                    ***A DOUBLE PRECISION ROUTINE***
    13  C         ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
    14  C         BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
    15  C         ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
    16  C         -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED
    17  C         FUNCTIONS
    18  C
    19  C         CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z)   J = 1,...,N , X=REAL(Z)
    20  C
    21  C         WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
    22  C         RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
    23  C         ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
    24  C         (REF. 1).
    25  C
    26  C         INPUT      ZR,ZI,FNU ARE DOUBLE PRECISION
    27  C           ZR,ZI  - Z=CMPLX(ZR,ZI),  -PI.LT.ARG(Z).LE.PI
    28  C           FNU    - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0
    29  C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
    30  C                    KODE= 1  RETURNS
    31  C                             CY(J)=I(FNU+J-1,Z), J=1,...,N
    32  C                        = 2  RETURNS
    33  C                             CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
    34  C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
    35  C
    36  C         OUTPUT     CYR,CYI ARE DOUBLE PRECISION
    37  C           CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
    38  C                    CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
    39  C                    CY(J)=I(FNU+J-1,Z)  OR
    40  C                    CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X))  J=1,...,N
    41  C                    DEPENDING ON KODE, X=REAL(Z)
    42  C           NZ     - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
    43  C                    NZ= 0   , NORMAL RETURN
    44  C                    NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
    45  C                              TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
    46  C                              J = N-NZ+1,...,N
    47  C           IERR   - ERROR FLAG
    48  C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
    49  C                    IERR=1, INPUT ERROR   - NO COMPUTATION
    50  C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(Z) TOO
    51  C                            LARGE ON KODE=1
    52  C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
    53  C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
    54  C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
    55  C                            ACCURACY
    56  C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
    57  C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
    58  C                            CANCE BY ARGUMENT REDUCTION
    59  C                    IERR=5, ERROR              - NO COMPUTATION,
    60  C                            ALGORITHM TERMINATION CONDITION NOT MET
    61  C
    62  C***LONG DESCRIPTION
    63  C
    64  C         THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
    65  C         SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
    66  C         THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
    67  C         NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
    68  C         UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
    69  C         FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
    70  C         SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
    71  C
    72  C         THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
    73  C         CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
    74  C
    75  C         I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z)  REAL(Z).GT.0.0
    76  C                       M = +I OR -I,  I**2=-1
    77  C
    78  C         FOR NEGATIVE ORDERS,THE FORMULA
    79  C
    80  C              I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
    81  C
    82  C         CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
    83  C         THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
    84  C         INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
    85  C         NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
    86  C         K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
    87  C         TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
    88  C         UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
    89  C         OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
    90  C         LARGE MEANS FNU.GT.CABS(Z).
    91  C
    92  C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
    93  C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
    94  C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
    95  C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
    96  C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
    97  C         IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
    98  C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
    99  C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
   100  C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
   101  C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
   102  C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
   103  C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
   104  C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
   105  C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
   106  C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
   107  C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
   108  C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
   109  C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
   110  C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
   111  C
   112  C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
   113  C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
   114  C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
   115  C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
   116  C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
   117  C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
   118  C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
   119  C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
   120  C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
   121  C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
   122  C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
   123  C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
   124  C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
   125  C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
   126  C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
   127  C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
   128  C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
   129  C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
   130  C         OR -PI/2+P.
   131  C
   132  C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
   133  C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
   134  C                 COMMERCE, 1955.
   135  C
   136  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   137  C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
   138  C
   139  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   140  C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
   141  C
   142  C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   143  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
   144  C                 1018, MAY, 1985
   145  C
   146  C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   147  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
   148  C                 MATH. SOFTWARE, 1986
   149  C
   150  C***ROUTINES CALLED  ZBINU,I1MACH,D1MACH
   151  C***END PROLOGUE  ZBESI
   152  C     COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
   153        DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
   154       * CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
   155       * ZR, D1MACH, AZ, BB, FN, ZABS, ASCLE, RTOL, ATOL, STI
   156        INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
   157        DIMENSION CYR(N), CYI(N)
   158        DATA PI /3.14159265358979324D0/
   159        DATA CONER, CONEI /1.0D0,0.0D0/
   160  C
   161  C***FIRST EXECUTABLE STATEMENT  ZBESI
   162        IERR = 0
   163        NZ=0
   164        IF (FNU.LT.0.0D0) IERR=1
   165        IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
   166        IF (N.LT.1) IERR=1
   167        IF (IERR.NE.0) RETURN
   168  C-----------------------------------------------------------------------
   169  C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
   170  C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
   171  C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
   172  C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
   173  C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
   174  C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
   175  C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
   176  C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
   177  C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
   178  C-----------------------------------------------------------------------
   179        TOL = DMAX1(D1MACH(4),1.0D-18)
   180        K1 = I1MACH(15)
   181        K2 = I1MACH(16)
   182        R1M5 = D1MACH(5)
   183        K = MIN0(IABS(K1),IABS(K2))
   184        ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
   185        K1 = I1MACH(14) - 1
   186        AA = R1M5*DBLE(FLOAT(K1))
   187        DIG = DMIN1(AA,18.0D0)
   188        AA = AA*2.303D0
   189        ALIM = ELIM + DMAX1(-AA,-41.45D0)
   190        RL = 1.2D0*DIG + 3.0D0
   191        FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
   192  C-----------------------------------------------------------------------------
   193  C     TEST FOR PROPER RANGE
   194  C-----------------------------------------------------------------------
   195        AZ = ZABS(CMPLX(ZR,ZI,kind=KIND(1.0D0)))
   196        FN = FNU+DBLE(FLOAT(N-1))
   197        AA = 0.5D0/TOL
   198        BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
   199        AA = DMIN1(AA,BB)
   200        IF (AZ.GT.AA) GO TO 260
   201        IF (FN.GT.AA) GO TO 260
   202        AA = DSQRT(AA)
   203        IF (AZ.GT.AA) IERR=3
   204        IF (FN.GT.AA) IERR=3
   205        ZNR = ZR
   206        ZNI = ZI
   207        CSGNR = CONER
   208        CSGNI = CONEI
   209        IF (ZR.GE.0.0D0) GO TO 40
   210        ZNR = -ZR
   211        ZNI = -ZI
   212  C-----------------------------------------------------------------------
   213  C     CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
   214  C     WHEN FNU IS LARGE
   215  C-----------------------------------------------------------------------
   216        INU = INT(SNGL(FNU))
   217        ARG = (FNU-DBLE(FLOAT(INU)))*PI
   218        IF (ZI.LT.0.0D0) ARG = -ARG
   219        CSGNR = DCOS(ARG)
   220        CSGNI = DSIN(ARG)
   221        IF (MOD(INU,2).EQ.0) GO TO 40
   222        CSGNR = -CSGNR
   223        CSGNI = -CSGNI
   224     40 CONTINUE
   225        CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
   226       * ELIM, ALIM)
   227        IF (NZ.LT.0) GO TO 120
   228        IF (ZR.GE.0.0D0) RETURN
   229  C-----------------------------------------------------------------------
   230  C     ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
   231  C-----------------------------------------------------------------------
   232        NN = N - NZ
   233        IF (NN.EQ.0) RETURN
   234        RTOL = 1.0D0/TOL
   235        ASCLE = D1MACH(1)*RTOL*1.0D+3
   236        DO 50 I=1,NN
   237  C       STR = CYR(I)*CSGNR - CYI(I)*CSGNI
   238  C       CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
   239  C       CYR(I) = STR
   240          AA = CYR(I)
   241          BB = CYI(I)
   242          ATOL = 1.0D0
   243          IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
   244            AA = AA*RTOL
   245            BB = BB*RTOL
   246            ATOL = TOL
   247     55   CONTINUE
   248          STR = AA*CSGNR - BB*CSGNI
   249          STI = AA*CSGNI + BB*CSGNR
   250          CYR(I) = STR*ATOL
   251          CYI(I) = STI*ATOL
   252          CSGNR = -CSGNR
   253          CSGNI = -CSGNI
   254     50 CONTINUE
   255        RETURN
   256    120 CONTINUE
   257        IF(NZ.EQ.(-2)) GO TO 130
   258        NZ = 0
   259        IERR=2
   260        RETURN
   261    130 CONTINUE
   262        NZ=0
   263        IERR=5
   264        RETURN
   265    260 CONTINUE
   266        NZ=0
   267        IERR=4
   268        RETURN
   269        END