github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/num/dualcmplx/dual.go (about) 1 // Copyright ©2018 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package dualcmplx 6 7 import ( 8 "fmt" 9 "math" 10 "math/cmplx" 11 "strings" 12 ) 13 14 // Number is a float64 precision anti-commutative dual complex number. 15 type Number struct { 16 Real, Dual complex128 17 } 18 19 // Format implements fmt.Formatter. 20 func (d Number) Format(fs fmt.State, c rune) { 21 prec, pOk := fs.Precision() 22 if !pOk { 23 prec = -1 24 } 25 width, wOk := fs.Width() 26 if !wOk { 27 width = -1 28 } 29 switch c { 30 case 'v': 31 if fs.Flag('#') { 32 fmt.Fprintf(fs, "%T{Real:%#v, Dual:%#v}", d, d.Real, d.Dual) 33 return 34 } 35 if fs.Flag('+') { 36 fmt.Fprintf(fs, "{Real:%+v, Dual:%+v}", d.Real, d.Dual) 37 return 38 } 39 c = 'g' 40 prec = -1 41 fallthrough 42 case 'e', 'E', 'f', 'F', 'g', 'G': 43 fre := fmtString(fs, c, prec, width, false) 44 fim := fmtString(fs, c, prec, width, true) 45 fmt.Fprintf(fs, fmt.Sprintf("(%s+%[2]sϵ)", fre, fim), d.Real, d.Dual) 46 default: 47 fmt.Fprintf(fs, "%%!%c(%T=%[2]v)", c, d) 48 return 49 } 50 } 51 52 // This is horrible, but it's what we have. 53 func fmtString(fs fmt.State, c rune, prec, width int, wantPlus bool) string { 54 var b strings.Builder 55 b.WriteByte('%') 56 for _, f := range "0+- " { 57 if fs.Flag(int(f)) || (f == '+' && wantPlus) { 58 b.WriteByte(byte(f)) 59 } 60 } 61 if width >= 0 { 62 fmt.Fprint(&b, width) 63 } 64 if prec >= 0 { 65 b.WriteByte('.') 66 if prec > 0 { 67 fmt.Fprint(&b, prec) 68 } 69 } 70 b.WriteRune(c) 71 return b.String() 72 } 73 74 // Add returns the sum of x and y. 75 func Add(x, y Number) Number { 76 return Number{ 77 Real: x.Real + y.Real, 78 Dual: x.Dual + y.Dual, 79 } 80 } 81 82 // Sub returns the difference of x and y, x-y. 83 func Sub(x, y Number) Number { 84 return Number{ 85 Real: x.Real - y.Real, 86 Dual: x.Dual - y.Dual, 87 } 88 } 89 90 // Mul returns the dual product of x and y, x×y. 91 func Mul(x, y Number) Number { 92 return Number{ 93 Real: x.Real * y.Real, 94 Dual: x.Real*y.Dual + x.Dual*cmplx.Conj(y.Real), 95 } 96 } 97 98 // Inv returns the dual inverse of d. 99 func Inv(d Number) Number { 100 return Number{ 101 Real: 1 / d.Real, 102 Dual: -d.Dual / (d.Real * cmplx.Conj(d.Real)), 103 } 104 } 105 106 // Conj returns the conjugate of d₁+d₂ϵ, d̅₁+d₂ϵ. 107 func Conj(d Number) Number { 108 return Number{ 109 Real: cmplx.Conj(d.Real), 110 Dual: d.Dual, 111 } 112 } 113 114 // Scale returns d scaled by f. 115 func Scale(f float64, d Number) Number { 116 return Number{Real: complex(f, 0) * d.Real, Dual: complex(f, 0) * d.Dual} 117 } 118 119 // Abs returns the absolute value of d. 120 func Abs(d Number) float64 { 121 return cmplx.Abs(d.Real) 122 } 123 124 // PowReal returns d**p, the base-d exponential of p. 125 // 126 // Special cases are (in order): 127 // PowReal(NaN+xϵ, ±0) = 1+NaNϵ for any x 128 // Pow(0+xϵ, y) = 0+Infϵ for all y < 1. 129 // Pow(0+xϵ, y) = 0 for all y > 1. 130 // PowReal(x, ±0) = 1 for any x 131 // PowReal(1+xϵ, y) = 1+xyϵ for any y 132 // Pow(Inf, y) = +Inf+NaNϵ for y > 0 133 // Pow(Inf, y) = +0+NaNϵ for y < 0 134 // PowReal(x, 1) = x for any x 135 // PowReal(NaN+xϵ, y) = NaN+NaNϵ 136 // PowReal(x, NaN) = NaN+NaNϵ 137 // PowReal(-1, ±Inf) = 1 138 // PowReal(x+0ϵ, +Inf) = +Inf+NaNϵ for |x| > 1 139 // PowReal(x+yϵ, +Inf) = +Inf for |x| > 1 140 // PowReal(x, -Inf) = +0+NaNϵ for |x| > 1 141 // PowReal(x, +Inf) = +0+NaNϵ for |x| < 1 142 // PowReal(x+0ϵ, -Inf) = +Inf+NaNϵ for |x| < 1 143 // PowReal(x, -Inf) = +Inf-Infϵ for |x| < 1 144 // PowReal(+Inf, y) = +Inf for y > 0 145 // PowReal(+Inf, y) = +0 for y < 0 146 // PowReal(-Inf, y) = Pow(-0, -y) 147 func PowReal(d Number, p float64) Number { 148 switch { 149 case p == 0: 150 switch { 151 case cmplx.IsNaN(d.Real): 152 return Number{Real: 1, Dual: cmplx.NaN()} 153 case d.Real == 0, cmplx.IsInf(d.Real): 154 return Number{Real: 1} 155 } 156 case p == 1: 157 if cmplx.IsInf(d.Real) { 158 d.Dual = cmplx.NaN() 159 } 160 return d 161 case math.IsInf(p, 1): 162 if d.Real == -1 { 163 return Number{Real: 1, Dual: cmplx.NaN()} 164 } 165 if Abs(d) > 1 { 166 if d.Dual == 0 { 167 return Number{Real: cmplx.Inf(), Dual: cmplx.NaN()} 168 } 169 return Number{Real: cmplx.Inf(), Dual: cmplx.Inf()} 170 } 171 return Number{Real: 0, Dual: cmplx.NaN()} 172 case math.IsInf(p, -1): 173 if d.Real == -1 { 174 return Number{Real: 1, Dual: cmplx.NaN()} 175 } 176 if Abs(d) > 1 { 177 return Number{Real: 0, Dual: cmplx.NaN()} 178 } 179 if d.Dual == 0 { 180 return Number{Real: cmplx.Inf(), Dual: cmplx.NaN()} 181 } 182 return Number{Real: cmplx.Inf(), Dual: cmplx.Inf()} 183 case math.IsNaN(p): 184 return Number{Real: cmplx.NaN(), Dual: cmplx.NaN()} 185 case d.Real == 0: 186 if p < 1 { 187 return Number{Real: d.Real, Dual: cmplx.Inf()} 188 } 189 return Number{Real: d.Real} 190 case cmplx.IsInf(d.Real): 191 if p < 0 { 192 return Number{Real: 0, Dual: cmplx.NaN()} 193 } 194 return Number{Real: cmplx.Inf(), Dual: cmplx.NaN()} 195 } 196 return Pow(d, Number{Real: complex(p, 0)}) 197 } 198 199 // Pow returns d**p, the base-d exponential of p. 200 func Pow(d, p Number) Number { 201 return Exp(Mul(p, Log(d))) 202 } 203 204 // Sqrt returns the square root of d. 205 // 206 // Special cases are: 207 // Sqrt(+Inf) = +Inf 208 // Sqrt(±0) = (±0+Infϵ) 209 // Sqrt(x < 0) = NaN 210 // Sqrt(NaN) = NaN 211 func Sqrt(d Number) Number { 212 return PowReal(d, 0.5) 213 } 214 215 // Exp returns e**q, the base-e exponential of d. 216 // 217 // Special cases are: 218 // Exp(+Inf) = +Inf 219 // Exp(NaN) = NaN 220 // Very large values overflow to 0 or +Inf. 221 // Very small values underflow to 1. 222 func Exp(d Number) Number { 223 fn := cmplx.Exp(d.Real) 224 if imag(d.Real) == 0 { 225 return Number{Real: fn, Dual: fn * d.Dual} 226 } 227 conj := cmplx.Conj(d.Real) 228 return Number{ 229 Real: fn, 230 Dual: ((fn - cmplx.Exp(conj)) / (d.Real - conj)) * d.Dual, 231 } 232 } 233 234 // Log returns the natural logarithm of d. 235 // 236 // Special cases are: 237 // Log(+Inf) = (+Inf+0ϵ) 238 // Log(0) = (-Inf±Infϵ) 239 // Log(x < 0) = NaN 240 // Log(NaN) = NaN 241 func Log(d Number) Number { 242 fn := cmplx.Log(d.Real) 243 switch { 244 case d.Real == 0: 245 return Number{ 246 Real: fn, 247 Dual: complex(math.Copysign(math.Inf(1), real(d.Real)), math.NaN()), 248 } 249 case imag(d.Real) == 0: 250 return Number{ 251 Real: fn, 252 Dual: d.Dual / d.Real, 253 } 254 case cmplx.IsInf(d.Real): 255 return Number{ 256 Real: fn, 257 Dual: 0, 258 } 259 } 260 conj := cmplx.Conj(d.Real) 261 return Number{ 262 Real: fn, 263 Dual: ((fn - cmplx.Log(conj)) / (d.Real - conj)) * d.Dual, 264 } 265 }