github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/num/dualcmplx/dual_example_test.go (about) 1 // Copyright ©2018 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package dualcmplx_test 6 7 import ( 8 "fmt" 9 "math" 10 11 "github.com/jingcheng-WU/gonum/floats/scalar" 12 "github.com/jingcheng-WU/gonum/num/dualcmplx" 13 ) 14 15 // point is a 2-dimensional point/vector. 16 type point struct { 17 x, y float64 18 } 19 20 // raise raises the dimensionality of a point to a complex. 21 func raise(p point) complex128 { 22 return complex(p.x, p.y) 23 } 24 25 // raiseDual raises the dimensionality of a point to a dual complex number. 26 func raiseDual(p point) dualcmplx.Number { 27 return dualcmplx.Number{ 28 Real: 1, 29 Dual: complex(p.x, p.y), 30 } 31 } 32 33 // transform performs the transformation of p by the given dual complex numbers. 34 // The transformations are normalized to unit vectors. 35 func transform(p point, by ...dualcmplx.Number) point { 36 if len(by) == 0 { 37 return p 38 } 39 40 // Ensure the modulus of by is correctly scaled. 41 for i := range by { 42 if len := dualcmplx.Abs(by[i]); len != 1 { 43 by[i].Real *= complex(1/len, 0) 44 } 45 } 46 47 // Perform the transformations. 48 z := by[0] 49 for _, o := range by[1:] { 50 z = dualcmplx.Mul(o, z) 51 } 52 pp := dualcmplx.Mul(dualcmplx.Mul(z, raiseDual(p)), dualcmplx.Conj(z)) 53 54 // Extract the point. 55 return point{x: real(pp.Dual), y: imag(pp.Dual)} 56 } 57 58 func Example() { 59 // Translate a 1×1 square by [3, 4] and rotate it 90° around the 60 // origin. 61 fmt.Println("square:") 62 63 // Construct a displacement. 64 displace := dualcmplx.Number{ 65 Real: 1, 66 Dual: 0.5 * raise(point{3, 4}), 67 } 68 69 // Construct a rotation. 70 alpha := math.Pi / 2 71 rotate := dualcmplx.Number{Real: complex(math.Cos(alpha/2), math.Sin(alpha/2))} 72 73 for i, p := range []point{ 74 {x: 0, y: 0}, 75 {x: 0, y: 1}, 76 {x: 1, y: 0}, 77 {x: 1, y: 1}, 78 } { 79 pp := transform(p, 80 displace, rotate, 81 ) 82 83 // Clean up floating point error for clarity. 84 pp.x = scalar.Round(pp.x, 2) 85 pp.y = scalar.Round(pp.y, 2) 86 87 fmt.Printf(" %d %+v -> %+v\n", i, p, pp) 88 } 89 90 // Rotate a line segment 90° around its lower end [2, 2]. 91 fmt.Println("\nline segment:") 92 93 // Construct a displacement to the origin from the lower end... 94 origin := dualcmplx.Number{ 95 Real: 1, 96 Dual: 0.5 * raise(point{-2, -2}), 97 } 98 // ... and back from the origin to the lower end. 99 replace := dualcmplx.Number{ 100 Real: 1, 101 Dual: -origin.Dual, 102 } 103 104 for i, p := range []point{ 105 {x: 2, y: 2}, 106 {x: 2, y: 3}, 107 } { 108 pp := transform(p, 109 origin, // Displace to origin. 110 rotate, // Rotate around axis. 111 replace, // Displace back to original location. 112 ) 113 114 // Clean up floating point error for clarity. 115 pp.x = scalar.Round(pp.x, 2) 116 pp.y = scalar.Round(pp.y, 2) 117 118 fmt.Printf(" %d %+v -> %+v\n", i, p, pp) 119 } 120 121 // Output: 122 // 123 // square: 124 // 0 {x:0 y:0} -> {x:-4 y:3} 125 // 1 {x:0 y:1} -> {x:-5 y:3} 126 // 2 {x:1 y:0} -> {x:-4 y:4} 127 // 3 {x:1 y:1} -> {x:-5 y:4} 128 // 129 // line segment: 130 // 0 {x:2 y:2} -> {x:2 y:2} 131 // 1 {x:2 y:3} -> {x:1 y:2} 132 }