github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/optimize/minimize.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package optimize 6 7 import ( 8 "fmt" 9 "math" 10 "time" 11 12 "github.com/jingcheng-WU/gonum/floats" 13 "github.com/jingcheng-WU/gonum/mat" 14 ) 15 16 const ( 17 nonpositiveDimension string = "optimize: non-positive input dimension" 18 negativeTasks string = "optimize: negative input number of tasks" 19 ) 20 21 func min(a, b int) int { 22 if a < b { 23 return a 24 } 25 return b 26 } 27 28 // Task is a type to communicate between the Method and the outer 29 // calling script. 30 type Task struct { 31 ID int 32 Op Operation 33 *Location 34 } 35 36 // Location represents a location in the optimization procedure. 37 type Location struct { 38 // X is the function input for the location. 39 X []float64 40 // F is the result of evaluating the function at X. 41 F float64 42 // Gradient holds the first-order partial derivatives 43 // of the function at X. 44 // The length of Gradient must match the length of X 45 // or be zero. If the capacity of Gradient is less 46 // than the length of X, a new slice will be allocated. 47 Gradient []float64 48 // Hessian holds the second-order partial derivatives 49 // of the function at X. 50 // The dimensions of Hessian must match the length of X 51 // or Hessian must be nil or empty. If Hessian is nil 52 // a new mat.SymDense will be allocated, if it is empty 53 // it will be resized to match the length of X. 54 Hessian *mat.SymDense 55 } 56 57 // Method is a type which can search for an optimum of an objective function. 58 type Method interface { 59 // Init initializes the method for optimization. The inputs are 60 // the problem dimension and number of available concurrent tasks. 61 // 62 // Init returns the number of concurrent processes to use, which must be 63 // less than or equal to tasks. 64 Init(dim, tasks int) (concurrent int) 65 // Run runs an optimization. The method sends Tasks on 66 // the operation channel (for performing function evaluations, major 67 // iterations, etc.). The result of the tasks will be returned on Result. 68 // See the documentation for Operation types for the possible operations. 69 // 70 // The caller of Run will signal the termination of the optimization 71 // (i.e. convergence from user settings) by sending a task with a PostIteration 72 // Op field on result. More tasks may still be sent on operation after this 73 // occurs, but only MajorIteration operations will still be conducted 74 // appropriately. Thus, it can not be guaranteed that all Evaluations sent 75 // on operation will be evaluated, however if an Evaluation is started, 76 // the results of that evaluation will be sent on results. 77 // 78 // The Method must read from the result channel until it is closed. 79 // During this, the Method may want to send new MajorIteration(s) on 80 // operation. Method then must close operation, and return from Run. 81 // These steps must establish a "happens-before" relationship between result 82 // being closed (externally) and Run closing operation, for example 83 // by using a range loop to read from result even if no results are expected. 84 // 85 // The last parameter to Run is a slice of tasks with length equal to 86 // the return from Init. Task has an ID field which may be 87 // set and modified by Method, and must not be modified by the caller. 88 // The first element of tasks contains information about the initial location. 89 // The Location.X field is always valid. The Operation field specifies which 90 // other values of Location are known. If Operation == NoOperation, none of 91 // the values should be used, otherwise the Evaluation operations will be 92 // composed to specify the valid fields. Methods are free to use or 93 // ignore these values. 94 // 95 // Successful execution of an Operation may require the Method to modify 96 // fields a Location. MajorIteration calls will not modify the values in 97 // the Location, but Evaluation operations will. Methods are encouraged to 98 // leave Location fields untouched to allow memory re-use. If data needs to 99 // be stored, the respective field should be set to nil -- Methods should 100 // not allocate Location memory themselves. 101 // 102 // Method may have its own specific convergence criteria, which can 103 // be communicated using a MethodDone operation. This will trigger a 104 // PostIteration to be sent on result, and the MethodDone task will not be 105 // returned on result. The Method must implement Statuser, and the 106 // call to Status must return a Status other than NotTerminated. 107 // 108 // The operation and result tasks are guaranteed to have a buffer length 109 // equal to the return from Init. 110 Run(operation chan<- Task, result <-chan Task, tasks []Task) 111 // Uses checks if the Method is suited to the optimization problem. The 112 // input is the available functions in Problem to call, and the returns are 113 // the functions which may be used and an error if there is a mismatch 114 // between the Problem and the Method's capabilities. 115 Uses(has Available) (uses Available, err error) 116 } 117 118 // Minimize uses an optimizer to search for a minimum of a function. A 119 // maximization problem can be transformed into a minimization problem by 120 // multiplying the function by -1. 121 // 122 // The first argument represents the problem to be minimized. Its fields are 123 // routines that evaluate the objective function, gradient, and other 124 // quantities related to the problem. The objective function, p.Func, must not 125 // be nil. The optimization method used may require other fields to be non-nil 126 // as specified by method.Needs. Minimize will panic if these are not met. The 127 // method can be determined automatically from the supplied problem which is 128 // described below. 129 // 130 // If p.Status is not nil, it is called before every evaluation. If the 131 // returned Status is other than NotTerminated or if the error is not nil, the 132 // optimization run is terminated. 133 // 134 // The second argument specifies the initial location for the optimization. 135 // Some Methods do not require an initial location, but initX must still be 136 // specified for the dimension of the optimization problem. 137 // 138 // The third argument contains the settings for the minimization. If settings 139 // is nil, the zero value will be used, see the documentation of the Settings 140 // type for more information, and see the warning below. All settings will be 141 // honored for all Methods, even if that setting is counter-productive to the 142 // method. Minimize cannot guarantee strict adherence to the evaluation bounds 143 // specified when performing concurrent evaluations and updates. 144 // 145 // The final argument is the optimization method to use. If method == nil, then 146 // an appropriate default is chosen based on the properties of the other arguments 147 // (dimension, gradient-free or gradient-based, etc.). If method is not nil, 148 // Minimize panics if the Problem is not consistent with the Method (Uses 149 // returns an error). 150 // 151 // Minimize returns a Result struct and any error that occurred. See the 152 // documentation of Result for more information. 153 // 154 // See the documentation for Method for the details on implementing a method. 155 // 156 // Be aware that the default settings of Minimize are to accurately find the 157 // minimum. For certain functions and optimization methods, this can take many 158 // function evaluations. The Settings input struct can be used to limit this, 159 // for example by modifying the maximum function evaluations or gradient tolerance. 160 func Minimize(p Problem, initX []float64, settings *Settings, method Method) (*Result, error) { 161 startTime := time.Now() 162 if method == nil { 163 method = getDefaultMethod(&p) 164 } 165 if settings == nil { 166 settings = &Settings{} 167 } 168 stats := &Stats{} 169 dim := len(initX) 170 err := checkOptimization(p, dim, settings.Recorder) 171 if err != nil { 172 return nil, err 173 } 174 175 optLoc := newLocation(dim) // This must have an allocated X field. 176 optLoc.F = math.Inf(1) 177 178 initOp, initLoc := getInitLocation(dim, initX, settings.InitValues) 179 180 converger := settings.Converger 181 if converger == nil { 182 converger = defaultFunctionConverge() 183 } 184 converger.Init(dim) 185 186 stats.Runtime = time.Since(startTime) 187 188 // Send initial location to Recorder 189 if settings.Recorder != nil { 190 err = settings.Recorder.Record(optLoc, InitIteration, stats) 191 if err != nil { 192 return nil, err 193 } 194 } 195 196 // Run optimization 197 var status Status 198 status, err = minimize(&p, method, settings, converger, stats, initOp, initLoc, optLoc, startTime) 199 200 // Cleanup and collect results 201 if settings.Recorder != nil && err == nil { 202 err = settings.Recorder.Record(optLoc, PostIteration, stats) 203 } 204 stats.Runtime = time.Since(startTime) 205 return &Result{ 206 Location: *optLoc, 207 Stats: *stats, 208 Status: status, 209 }, err 210 } 211 212 func getDefaultMethod(p *Problem) Method { 213 if p.Grad != nil { 214 return &LBFGS{} 215 } 216 return &NelderMead{} 217 } 218 219 // minimize performs an optimization. minimize updates the settings and optLoc, 220 // and returns the final Status and error. 221 func minimize(prob *Problem, method Method, settings *Settings, converger Converger, stats *Stats, initOp Operation, initLoc, optLoc *Location, startTime time.Time) (Status, error) { 222 dim := len(optLoc.X) 223 nTasks := settings.Concurrent 224 if nTasks == 0 { 225 nTasks = 1 226 } 227 has := availFromProblem(*prob) 228 _, initErr := method.Uses(has) 229 if initErr != nil { 230 panic(fmt.Sprintf("optimize: specified method inconsistent with Problem: %v", initErr)) 231 } 232 newNTasks := method.Init(dim, nTasks) 233 if newNTasks > nTasks { 234 panic("optimize: too many tasks returned by Method") 235 } 236 nTasks = newNTasks 237 238 // Launch the method. The method communicates tasks using the operations 239 // channel, and results is used to return the evaluated results. 240 operations := make(chan Task, nTasks) 241 results := make(chan Task, nTasks) 242 go func() { 243 tasks := make([]Task, nTasks) 244 tasks[0].Location = initLoc 245 tasks[0].Op = initOp 246 for i := 1; i < len(tasks); i++ { 247 tasks[i].Location = newLocation(dim) 248 } 249 method.Run(operations, results, tasks) 250 }() 251 252 // Algorithmic Overview: 253 // There are three pieces to performing a concurrent optimization, 254 // the distributor, the workers, and the stats combiner. At a high level, 255 // the distributor reads in tasks sent by method, sending evaluations to the 256 // workers, and forwarding other operations to the statsCombiner. The workers 257 // read these forwarded evaluation tasks, evaluate the relevant parts of Problem 258 // and forward the results on to the stats combiner. The stats combiner reads 259 // in results from the workers, as well as tasks from the distributor, and 260 // uses them to update optimization statistics (function evaluations, etc.) 261 // and to check optimization convergence. 262 // 263 // The complicated part is correctly shutting down the optimization. The 264 // procedure is as follows. First, the stats combiner closes done and sends 265 // a PostIteration to the method. The distributor then reads that done has 266 // been closed, and closes the channel with the workers. At this point, no 267 // more evaluation operations will be executed. As the workers finish their 268 // evaluations, they forward the results onto the stats combiner, and then 269 // signal their shutdown to the stats combiner. When all workers have successfully 270 // finished, the stats combiner closes the results channel, signaling to the 271 // method that all results have been collected. At this point, the method 272 // may send MajorIteration(s) to update an optimum location based on these 273 // last returned results, and then the method will close the operations channel. 274 // The Method must ensure that the closing of results happens before the 275 // closing of operations in order to ensure proper shutdown order. 276 // Now that no more tasks will be commanded by the method, the distributor 277 // closes statsChan, and with no more statistics to update the optimization 278 // concludes. 279 280 workerChan := make(chan Task) // Delegate tasks to the workers. 281 statsChan := make(chan Task) // Send evaluation updates. 282 done := make(chan struct{}) // Communicate the optimization is done. 283 284 // Read tasks from the method and distribute as appropriate. 285 distributor := func() { 286 for { 287 select { 288 case task := <-operations: 289 switch task.Op { 290 case InitIteration: 291 panic("optimize: Method returned InitIteration") 292 case PostIteration: 293 panic("optimize: Method returned PostIteration") 294 case NoOperation, MajorIteration, MethodDone: 295 statsChan <- task 296 default: 297 if !task.Op.isEvaluation() { 298 panic("optimize: expecting evaluation operation") 299 } 300 workerChan <- task 301 } 302 case <-done: 303 // No more evaluations will be sent, shut down the workers, and 304 // read the final tasks. 305 close(workerChan) 306 for task := range operations { 307 if task.Op == MajorIteration { 308 statsChan <- task 309 } 310 } 311 close(statsChan) 312 return 313 } 314 } 315 } 316 go distributor() 317 318 // Evaluate the Problem concurrently. 319 worker := func() { 320 x := make([]float64, dim) 321 for task := range workerChan { 322 evaluate(prob, task.Location, task.Op, x) 323 statsChan <- task 324 } 325 // Signal successful worker completion. 326 statsChan <- Task{Op: signalDone} 327 } 328 for i := 0; i < nTasks; i++ { 329 go worker() 330 } 331 332 var ( 333 workersDone int // effective wg for the workers 334 status Status 335 err error 336 finalStatus Status 337 finalError error 338 ) 339 340 // Update optimization statistics and check convergence. 341 var methodDone bool 342 for task := range statsChan { 343 switch task.Op { 344 default: 345 if !task.Op.isEvaluation() { 346 panic("minimize: evaluation task expected") 347 } 348 updateEvaluationStats(stats, task.Op) 349 status, err = checkEvaluationLimits(prob, stats, settings) 350 case signalDone: 351 workersDone++ 352 if workersDone == nTasks { 353 close(results) 354 } 355 continue 356 case NoOperation: 357 // Just send the task back. 358 case MajorIteration: 359 status = performMajorIteration(optLoc, task.Location, stats, converger, startTime, settings) 360 case MethodDone: 361 methodDone = true 362 status = MethodConverge 363 } 364 if settings.Recorder != nil && status == NotTerminated && err == nil { 365 stats.Runtime = time.Since(startTime) 366 // Allow err to be overloaded if the Recorder fails. 367 err = settings.Recorder.Record(task.Location, task.Op, stats) 368 if err != nil { 369 status = Failure 370 } 371 } 372 // If this is the first termination status, trigger the conclusion of 373 // the optimization. 374 if status != NotTerminated || err != nil { 375 select { 376 case <-done: 377 default: 378 finalStatus = status 379 finalError = err 380 results <- Task{ 381 Op: PostIteration, 382 } 383 close(done) 384 } 385 } 386 387 // Send the result back to the Problem if there are still active workers. 388 if workersDone != nTasks && task.Op != MethodDone { 389 results <- task 390 } 391 } 392 // This code block is here rather than above to ensure Status() is not called 393 // before Method.Run closes operations. 394 if methodDone { 395 statuser, ok := method.(Statuser) 396 if !ok { 397 panic("optimize: method returned MethodDone but is not a Statuser") 398 } 399 finalStatus, finalError = statuser.Status() 400 if finalStatus == NotTerminated { 401 panic("optimize: method returned MethodDone but a NotTerminated status") 402 } 403 } 404 return finalStatus, finalError 405 } 406 407 func defaultFunctionConverge() *FunctionConverge { 408 return &FunctionConverge{ 409 Absolute: 1e-10, 410 Iterations: 100, 411 } 412 } 413 414 // newLocation allocates a new location structure with an X field of the 415 // appropriate size. 416 func newLocation(dim int) *Location { 417 return &Location{ 418 X: make([]float64, dim), 419 } 420 } 421 422 // getInitLocation checks the validity of initLocation and initOperation and 423 // returns the initial values as a *Location. 424 func getInitLocation(dim int, initX []float64, initValues *Location) (Operation, *Location) { 425 loc := newLocation(dim) 426 if initX == nil { 427 if initValues != nil { 428 panic("optimize: initValues is non-nil but no initial location specified") 429 } 430 return NoOperation, loc 431 } 432 copy(loc.X, initX) 433 if initValues == nil { 434 return NoOperation, loc 435 } else { 436 if initValues.X != nil { 437 panic("optimize: location specified in InitValues (only use InitX)") 438 } 439 } 440 loc.F = initValues.F 441 op := FuncEvaluation 442 if initValues.Gradient != nil { 443 if len(initValues.Gradient) != dim { 444 panic("optimize: initial gradient does not match problem dimension") 445 } 446 loc.Gradient = initValues.Gradient 447 op |= GradEvaluation 448 } 449 if initValues.Hessian != nil { 450 if initValues.Hessian.Symmetric() != dim { 451 panic("optimize: initial Hessian does not match problem dimension") 452 } 453 loc.Hessian = initValues.Hessian 454 op |= HessEvaluation 455 } 456 return op, loc 457 } 458 459 func checkOptimization(p Problem, dim int, recorder Recorder) error { 460 if p.Func == nil { 461 panic(badProblem) 462 } 463 if dim <= 0 { 464 panic("optimize: impossible problem dimension") 465 } 466 if p.Status != nil { 467 _, err := p.Status() 468 if err != nil { 469 return err 470 } 471 } 472 if recorder != nil { 473 err := recorder.Init() 474 if err != nil { 475 return err 476 } 477 } 478 return nil 479 } 480 481 // evaluate evaluates the routines specified by the Operation at loc.X, and stores 482 // the answer into loc. loc.X is copied into x before evaluating in order to 483 // prevent the routines from modifying it. 484 func evaluate(p *Problem, loc *Location, op Operation, x []float64) { 485 if !op.isEvaluation() { 486 panic(fmt.Sprintf("optimize: invalid evaluation %v", op)) 487 } 488 copy(x, loc.X) 489 if op&FuncEvaluation != 0 { 490 loc.F = p.Func(x) 491 } 492 if op&GradEvaluation != 0 { 493 // Make sure we have a destination in which to place the gradient. 494 if len(loc.Gradient) == 0 { 495 if cap(loc.Gradient) < len(x) { 496 loc.Gradient = make([]float64, len(x)) 497 } else { 498 loc.Gradient = loc.Gradient[:len(x)] 499 } 500 } 501 p.Grad(loc.Gradient, x) 502 } 503 if op&HessEvaluation != 0 { 504 // Make sure we have a destination in which to place the Hessian. 505 switch { 506 case loc.Hessian == nil: 507 loc.Hessian = mat.NewSymDense(len(x), nil) 508 case loc.Hessian.IsEmpty(): 509 loc.Hessian.ReuseAsSym(len(x)) 510 } 511 p.Hess(loc.Hessian, x) 512 } 513 } 514 515 // updateEvaluationStats updates the statistics based on the operation. 516 func updateEvaluationStats(stats *Stats, op Operation) { 517 if op&FuncEvaluation != 0 { 518 stats.FuncEvaluations++ 519 } 520 if op&GradEvaluation != 0 { 521 stats.GradEvaluations++ 522 } 523 if op&HessEvaluation != 0 { 524 stats.HessEvaluations++ 525 } 526 } 527 528 // checkLocationConvergence checks if the current optimal location satisfies 529 // any of the convergence criteria based on the function location. 530 // 531 // checkLocationConvergence returns NotTerminated if the Location does not satisfy 532 // the convergence criteria given by settings. Otherwise a corresponding status is 533 // returned. 534 // Unlike checkLimits, checkConvergence is called only at MajorIterations. 535 func checkLocationConvergence(loc *Location, settings *Settings, converger Converger) Status { 536 if math.IsInf(loc.F, -1) { 537 return FunctionNegativeInfinity 538 } 539 if loc.Gradient != nil && settings.GradientThreshold > 0 { 540 norm := floats.Norm(loc.Gradient, math.Inf(1)) 541 if norm < settings.GradientThreshold { 542 return GradientThreshold 543 } 544 } 545 return converger.Converged(loc) 546 } 547 548 // checkEvaluationLimits checks the optimization limits after an evaluation 549 // Operation. It checks the number of evaluations (of various kinds) and checks 550 // the status of the Problem, if applicable. 551 func checkEvaluationLimits(p *Problem, stats *Stats, settings *Settings) (Status, error) { 552 if p.Status != nil { 553 status, err := p.Status() 554 if err != nil || status != NotTerminated { 555 return status, err 556 } 557 } 558 if settings.FuncEvaluations > 0 && stats.FuncEvaluations >= settings.FuncEvaluations { 559 return FunctionEvaluationLimit, nil 560 } 561 if settings.GradEvaluations > 0 && stats.GradEvaluations >= settings.GradEvaluations { 562 return GradientEvaluationLimit, nil 563 } 564 if settings.HessEvaluations > 0 && stats.HessEvaluations >= settings.HessEvaluations { 565 return HessianEvaluationLimit, nil 566 } 567 return NotTerminated, nil 568 } 569 570 // checkIterationLimits checks the limits on iterations affected by MajorIteration. 571 func checkIterationLimits(loc *Location, stats *Stats, settings *Settings) Status { 572 if settings.MajorIterations > 0 && stats.MajorIterations >= settings.MajorIterations { 573 return IterationLimit 574 } 575 if settings.Runtime > 0 && stats.Runtime >= settings.Runtime { 576 return RuntimeLimit 577 } 578 return NotTerminated 579 } 580 581 // performMajorIteration does all of the steps needed to perform a MajorIteration. 582 // It increments the iteration count, updates the optimal location, and checks 583 // the necessary convergence criteria. 584 func performMajorIteration(optLoc, loc *Location, stats *Stats, converger Converger, startTime time.Time, settings *Settings) Status { 585 optLoc.F = loc.F 586 copy(optLoc.X, loc.X) 587 if loc.Gradient == nil { 588 optLoc.Gradient = nil 589 } else { 590 if optLoc.Gradient == nil { 591 optLoc.Gradient = make([]float64, len(loc.Gradient)) 592 } 593 copy(optLoc.Gradient, loc.Gradient) 594 } 595 stats.MajorIterations++ 596 stats.Runtime = time.Since(startTime) 597 status := checkLocationConvergence(optLoc, settings, converger) 598 if status != NotTerminated { 599 return status 600 } 601 return checkIterationLimits(optLoc, stats, settings) 602 }