github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/optimize/types.go (about) 1 // Copyright ©2014 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package optimize 6 7 import ( 8 "fmt" 9 "time" 10 11 "github.com/jingcheng-WU/gonum/mat" 12 ) 13 14 const defaultGradientAbsTol = 1e-12 15 16 // Operation represents the set of operations commanded by Method at each 17 // iteration. It is a bitmap of various Iteration and Evaluation constants. 18 // Individual constants must NOT be combined together by the binary OR operator 19 // except for the Evaluation operations. 20 type Operation uint64 21 22 // Supported Operations. 23 const ( 24 // NoOperation specifies that no evaluation or convergence check should 25 // take place. 26 NoOperation Operation = 0 27 // InitIteration is sent to Recorder to indicate the initial location. 28 // All fields of the location to record must be valid. 29 // Method must not return it. 30 InitIteration Operation = 1 << (iota - 1) 31 // PostIteration is sent to Recorder to indicate the final location 32 // reached during an optimization run. 33 // All fields of the location to record must be valid. 34 // Method must not return it. 35 PostIteration 36 // MajorIteration indicates that the next candidate location for 37 // an optimum has been found and convergence should be checked. 38 MajorIteration 39 // MethodDone declares that the method is done running. A method must 40 // be a Statuser in order to use this iteration, and after returning 41 // MethodDone, the Status must return other than NotTerminated. 42 MethodDone 43 // FuncEvaluation specifies that the objective function 44 // should be evaluated. 45 FuncEvaluation 46 // GradEvaluation specifies that the gradient 47 // of the objective function should be evaluated. 48 GradEvaluation 49 // HessEvaluation specifies that the Hessian 50 // of the objective function should be evaluated. 51 HessEvaluation 52 // signalDone is used internally to signal completion. 53 signalDone 54 55 // Mask for the evaluating operations. 56 evalMask = FuncEvaluation | GradEvaluation | HessEvaluation 57 ) 58 59 func (op Operation) isEvaluation() bool { 60 return op&evalMask != 0 && op&^evalMask == 0 61 } 62 63 func (op Operation) String() string { 64 if op&evalMask != 0 { 65 return fmt.Sprintf("Evaluation(Func: %t, Grad: %t, Hess: %t, Extra: 0b%b)", 66 op&FuncEvaluation != 0, 67 op&GradEvaluation != 0, 68 op&HessEvaluation != 0, 69 op&^(evalMask)) 70 } 71 s, ok := operationNames[op] 72 if ok { 73 return s 74 } 75 return fmt.Sprintf("Operation(%d)", op) 76 } 77 78 var operationNames = map[Operation]string{ 79 NoOperation: "NoOperation", 80 InitIteration: "InitIteration", 81 MajorIteration: "MajorIteration", 82 PostIteration: "PostIteration", 83 MethodDone: "MethodDone", 84 signalDone: "signalDone", 85 } 86 87 // Result represents the answer of an optimization run. It contains the optimum 88 // function value, X location, and gradient as well as the Status at convergence 89 // and Statistics taken during the run. 90 type Result struct { 91 Location 92 Stats 93 Status Status 94 } 95 96 // Stats contains the statistics of the run. 97 type Stats struct { 98 MajorIterations int // Total number of major iterations 99 FuncEvaluations int // Number of evaluations of Func 100 GradEvaluations int // Number of evaluations of Grad 101 HessEvaluations int // Number of evaluations of Hess 102 Runtime time.Duration // Total runtime of the optimization 103 } 104 105 // complementEval returns an evaluating operation that evaluates fields of loc 106 // not evaluated by eval. 107 func complementEval(loc *Location, eval Operation) (complEval Operation) { 108 if eval&FuncEvaluation == 0 { 109 complEval = FuncEvaluation 110 } 111 if loc.Gradient != nil && eval&GradEvaluation == 0 { 112 complEval |= GradEvaluation 113 } 114 if loc.Hessian != nil && eval&HessEvaluation == 0 { 115 complEval |= HessEvaluation 116 } 117 return complEval 118 } 119 120 // Problem describes the optimization problem to be solved. 121 type Problem struct { 122 // Func evaluates the objective function at the given location. Func 123 // must not modify x. 124 Func func(x []float64) float64 125 126 // Grad evaluates the gradient at x and stores the result in grad which will 127 // be the same length as x. Grad must not modify x. 128 Grad func(grad, x []float64) 129 130 // Hess evaluates the Hessian at x and stores the result in-place in hess which 131 // will have dimensions matching the length of x. Hess must not modify x. 132 Hess func(hess *mat.SymDense, x []float64) 133 134 // Status reports the status of the objective function being optimized and any 135 // error. This can be used to terminate early, for example when the function is 136 // not able to evaluate itself. The user can use one of the pre-provided Status 137 // constants, or may call NewStatus to create a custom Status value. 138 Status func() (Status, error) 139 } 140 141 // Available describes the functions available to call in Problem. 142 type Available struct { 143 Grad bool 144 Hess bool 145 } 146 147 func availFromProblem(prob Problem) Available { 148 return Available{Grad: prob.Grad != nil, Hess: prob.Hess != nil} 149 } 150 151 // function tests if the Problem described by the receiver is suitable for an 152 // unconstrained Method that only calls the function, and returns the result. 153 func (has Available) function() (uses Available, err error) { 154 // TODO(btracey): This needs to be modified when optimize supports 155 // constrained optimization. 156 return Available{}, nil 157 } 158 159 // gradient tests if the Problem described by the receiver is suitable for an 160 // unconstrained gradient-based Method, and returns the result. 161 func (has Available) gradient() (uses Available, err error) { 162 // TODO(btracey): This needs to be modified when optimize supports 163 // constrained optimization. 164 if !has.Grad { 165 return Available{}, ErrMissingGrad 166 } 167 return Available{Grad: true}, nil 168 } 169 170 // hessian tests if the Problem described by the receiver is suitable for an 171 // unconstrained Hessian-based Method, and returns the result. 172 func (has Available) hessian() (uses Available, err error) { 173 // TODO(btracey): This needs to be modified when optimize supports 174 // constrained optimization. 175 if !has.Grad { 176 return Available{}, ErrMissingGrad 177 } 178 if !has.Hess { 179 return Available{}, ErrMissingHess 180 } 181 return Available{Grad: true, Hess: true}, nil 182 } 183 184 // Settings represents settings of the optimization run. It contains initial 185 // settings, convergence information, and Recorder information. Convergence 186 // settings are only checked at MajorIterations, while Evaluation thresholds 187 // are checked at every Operation. See the field comments for default values. 188 type Settings struct { 189 // InitValues specifies properties (function value, gradient, etc.) known 190 // at the initial location passed to Minimize. If InitValues is non-nil, then 191 // the function value F must be provided, the location X must not be specified 192 // and other fields may be specified. The values in Location may be modified 193 // during the call to Minimize. 194 InitValues *Location 195 196 // GradientThreshold stops optimization with GradientThreshold status if the 197 // infinity norm of the gradient is less than this value. This defaults to 198 // a value of 0 (and so gradient convergence is not checked), however note 199 // that many Methods (LBFGS, CG, etc.) will converge with a small value of 200 // the gradient, and so to fully disable this setting the Method may need to 201 // be modified. 202 // This setting has no effect if the gradient is not used by the Method. 203 GradientThreshold float64 204 205 // Converger checks if the optimization has converged based on the (history 206 // of) locations found during the optimization. Minimize will pass the 207 // Location at every MajorIteration to the Converger. 208 // 209 // If the Converger is nil, a default value of 210 // FunctionConverge { 211 // Absolute: 1e-10, 212 // Iterations: 100, 213 // } 214 // will be used. NeverTerminated can be used to always return a 215 // NotTerminated status. 216 Converger Converger 217 218 // MajorIterations is the maximum number of iterations allowed. 219 // IterationLimit status is returned if the number of major iterations 220 // equals or exceeds this value. 221 // If it equals zero, this setting has no effect. 222 // The default value is 0. 223 MajorIterations int 224 225 // Runtime is the maximum runtime allowed. RuntimeLimit status is returned 226 // if the duration of the run is longer than this value. Runtime is only 227 // checked at MajorIterations of the Method. 228 // If it equals zero, this setting has no effect. 229 // The default value is 0. 230 Runtime time.Duration 231 232 // FuncEvaluations is the maximum allowed number of function evaluations. 233 // FunctionEvaluationLimit status is returned if the total number of calls 234 // to Func equals or exceeds this number. 235 // If it equals zero, this setting has no effect. 236 // The default value is 0. 237 FuncEvaluations int 238 239 // GradEvaluations is the maximum allowed number of gradient evaluations. 240 // GradientEvaluationLimit status is returned if the total number of calls 241 // to Grad equals or exceeds this number. 242 // If it equals zero, this setting has no effect. 243 // The default value is 0. 244 GradEvaluations int 245 246 // HessEvaluations is the maximum allowed number of Hessian evaluations. 247 // HessianEvaluationLimit status is returned if the total number of calls 248 // to Hess equals or exceeds this number. 249 // If it equals zero, this setting has no effect. 250 // The default value is 0. 251 HessEvaluations int 252 253 Recorder Recorder 254 255 // Concurrent represents how many concurrent evaluations are possible. 256 Concurrent int 257 } 258 259 // resize takes x and returns a slice of length dim. It returns a resliced x 260 // if cap(x) >= dim, and a new slice otherwise. 261 func resize(x []float64, dim int) []float64 { 262 if dim > cap(x) { 263 return make([]float64, dim) 264 } 265 return x[:dim] 266 } 267 268 func resizeSymDense(m *mat.SymDense, dim int) *mat.SymDense { 269 if m == nil || cap(m.RawSymmetric().Data) < dim*dim { 270 return mat.NewSymDense(dim, nil) 271 } 272 return mat.NewSymDense(dim, m.RawSymmetric().Data[:dim*dim]) 273 }