github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/spatial/barneshut/barneshut3.go (about) 1 // Copyright ©2019 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package barneshut 6 7 import ( 8 "errors" 9 "fmt" 10 "math" 11 12 "github.com/jingcheng-WU/gonum/spatial/r3" 13 ) 14 15 // Particle3 is a particle in a volume. 16 type Particle3 interface { 17 Coord3() r3.Vec 18 Mass() float64 19 } 20 21 // Force3 is a force modeling function for interactions between p1 and p2, 22 // m1 is the mass of p1 and m2 of p2. The vector v is the vector from p1 to 23 // p2. The returned value is the force vector acting on p1. 24 // 25 // In models where the identity of particles must be known, p1 and p2 may be 26 // compared. Force3 may be passed nil for p2 when the Barnes-Hut approximation 27 // is being used. A nil p2 indicates that the second mass center is an 28 // aggregate. 29 type Force3 func(p1, p2 Particle3, m1, m2 float64, v r3.Vec) r3.Vec 30 31 // Gravity3 returns a vector force on m1 by m2, equal to (m1⋅m2)/‖v‖² 32 // in the directions of v. Gravity3 ignores the identity of the interacting 33 // particles and returns a zero vector when the two particles are 34 // coincident, but performs no other sanity checks. 35 func Gravity3(_, _ Particle3, m1, m2 float64, v r3.Vec) r3.Vec { 36 d2 := v.X*v.X + v.Y*v.Y + v.Z*v.Z 37 if d2 == 0 { 38 return r3.Vec{} 39 } 40 return v.Scale((m1 * m2) / (d2 * math.Sqrt(d2))) 41 } 42 43 // Volume implements Barnes-Hut force approximation calculations. 44 type Volume struct { 45 root bucket 46 47 Particles []Particle3 48 } 49 50 // NewVolume returns a new Volume. If the volume is too large to allow 51 // particle coordinates to be distinguished due to floating point 52 // precision limits, NewVolume will return a non-nil error. 53 func NewVolume(p []Particle3) (*Volume, error) { 54 q := Volume{Particles: p} 55 err := q.Reset() 56 if err != nil { 57 return nil, err 58 } 59 return &q, nil 60 } 61 62 // Reset reconstructs the Barnes-Hut tree. Reset must be called if the 63 // Particles field or elements of Particles have been altered, unless 64 // ForceOn is called with theta=0 or no data structures have been 65 // previously built. If the volume is too large to allow particle 66 // coordinates to be distinguished due to floating point precision 67 // limits, Reset will return a non-nil error. 68 func (q *Volume) Reset() (err error) { 69 if len(q.Particles) == 0 { 70 q.root = bucket{} 71 return nil 72 } 73 74 q.root = bucket{ 75 particle: q.Particles[0], 76 center: q.Particles[0].Coord3(), 77 mass: q.Particles[0].Mass(), 78 } 79 q.root.bounds.Min = q.root.center 80 q.root.bounds.Max = q.root.center 81 for _, e := range q.Particles[1:] { 82 c := e.Coord3() 83 if c.X < q.root.bounds.Min.X { 84 q.root.bounds.Min.X = c.X 85 } 86 if c.X > q.root.bounds.Max.X { 87 q.root.bounds.Max.X = c.X 88 } 89 if c.Y < q.root.bounds.Min.Y { 90 q.root.bounds.Min.Y = c.Y 91 } 92 if c.Y > q.root.bounds.Max.Y { 93 q.root.bounds.Max.Y = c.Y 94 } 95 if c.Z < q.root.bounds.Min.Z { 96 q.root.bounds.Min.Z = c.Z 97 } 98 if c.Z > q.root.bounds.Max.Z { 99 q.root.bounds.Max.Z = c.Z 100 } 101 } 102 103 defer func() { 104 switch r := recover(); r { 105 case nil: 106 case volumeTooBig: 107 err = volumeTooBig 108 default: 109 panic(r) 110 } 111 }() 112 113 // TODO(kortschak): Partially parallelise this by 114 // choosing the direction and using one of eight 115 // goroutines to work on each root octant. 116 for _, e := range q.Particles[1:] { 117 q.root.insert(e) 118 } 119 q.root.summarize() 120 return nil 121 } 122 123 var volumeTooBig = errors.New("barneshut: volume too big") 124 125 // ForceOn returns a force vector on p given p's mass and the force function, f, 126 // using the Barnes-Hut theta approximation parameter. 127 // 128 // Calls to f will include p in the p1 position and a non-nil p2 if the force 129 // interaction is with a non-aggregate mass center, otherwise p2 will be nil. 130 // 131 // It is safe to call ForceOn concurrently. 132 func (q *Volume) ForceOn(p Particle3, theta float64, f Force3) (force r3.Vec) { 133 var empty bucket 134 if theta > 0 && q.root != empty { 135 return q.root.forceOn(p, p.Coord3(), p.Mass(), theta, f) 136 } 137 138 // For the degenerate case, just iterate over the 139 // slice of particles rather than walking the tree. 140 var v r3.Vec 141 m := p.Mass() 142 pv := p.Coord3() 143 for _, e := range q.Particles { 144 v = v.Add(f(p, e, m, e.Mass(), e.Coord3().Sub(pv))) 145 } 146 return v 147 } 148 149 // bucket is an oct tree octant with Barnes-Hut extensions. 150 type bucket struct { 151 particle Particle3 152 153 bounds r3.Box 154 155 nodes [8]*bucket 156 157 center r3.Vec 158 mass float64 159 } 160 161 // insert inserts p into the subtree rooted at b. 162 func (b *bucket) insert(p Particle3) { 163 if b.particle == nil { 164 for _, q := range b.nodes { 165 if q != nil { 166 b.passDown(p) 167 return 168 } 169 } 170 b.particle = p 171 b.center = p.Coord3() 172 b.mass = p.Mass() 173 return 174 } 175 176 b.passDown(p) 177 b.passDown(b.particle) 178 b.particle = nil 179 b.center = r3.Vec{} 180 b.mass = 0 181 } 182 183 func (b *bucket) passDown(p Particle3) { 184 dir := octantOf(b.bounds, p) 185 if b.nodes[dir] == nil { 186 b.nodes[dir] = &bucket{bounds: splitVolume(b.bounds, dir)} 187 } 188 b.nodes[dir].insert(p) 189 } 190 191 const ( 192 lne = iota 193 lse 194 lsw 195 lnw 196 une 197 use 198 usw 199 unw 200 ) 201 202 // octantOf returns which octant of b that p should be placed in. 203 func octantOf(b r3.Box, p Particle3) int { 204 center := r3.Vec{ 205 X: (b.Min.X + b.Max.X) / 2, 206 Y: (b.Min.Y + b.Max.Y) / 2, 207 Z: (b.Min.Z + b.Max.Z) / 2, 208 } 209 c := p.Coord3() 210 if checkBounds && (c.X < b.Min.X || b.Max.X < c.X || c.Y < b.Min.Y || b.Max.Y < c.Y || c.Z < b.Min.Z || b.Max.Z < c.Z) { 211 panic(fmt.Sprintf("p out of range %+v: %#v", b, p)) 212 } 213 if c.X < center.X { 214 if c.Y < center.Y { 215 if c.Z < center.Z { 216 return lnw 217 } else { 218 return unw 219 } 220 } else { 221 if c.Z < center.Z { 222 return lsw 223 } else { 224 return usw 225 } 226 } 227 } else { 228 if c.Y < center.Y { 229 if c.Z < center.Z { 230 return lne 231 } else { 232 return une 233 } 234 } else { 235 if c.Z < center.Z { 236 return lse 237 } else { 238 return use 239 } 240 } 241 } 242 } 243 244 // splitVolume returns an octant subdivision of b in the given direction. 245 func splitVolume(b r3.Box, dir int) r3.Box { 246 old := b 247 halfX := (b.Max.X - b.Min.X) / 2 248 halfY := (b.Max.Y - b.Min.Y) / 2 249 halfZ := (b.Max.Z - b.Min.Z) / 2 250 switch dir { 251 case lne: 252 b.Min.X += halfX 253 b.Max.Y -= halfY 254 b.Max.Z -= halfZ 255 case lse: 256 b.Min.X += halfX 257 b.Min.Y += halfY 258 b.Max.Z -= halfZ 259 case lsw: 260 b.Max.X -= halfX 261 b.Min.Y += halfY 262 b.Max.Z -= halfZ 263 case lnw: 264 b.Max.X -= halfX 265 b.Max.Y -= halfY 266 b.Max.Z -= halfZ 267 case une: 268 b.Min.X += halfX 269 b.Max.Y -= halfY 270 b.Min.Z += halfZ 271 case use: 272 b.Min.X += halfX 273 b.Min.Y += halfY 274 b.Min.Z += halfZ 275 case usw: 276 b.Max.X -= halfX 277 b.Min.Y += halfY 278 b.Min.Z += halfZ 279 case unw: 280 b.Max.X -= halfX 281 b.Max.Y -= halfY 282 b.Min.Z += halfZ 283 } 284 if b == old { 285 panic(volumeTooBig) 286 } 287 return b 288 } 289 290 // summarize updates node masses and centers of mass. 291 func (b *bucket) summarize() (center r3.Vec, mass float64) { 292 for _, d := range &b.nodes { 293 if d == nil { 294 continue 295 } 296 c, m := d.summarize() 297 b.center.X += c.X * m 298 b.center.Y += c.Y * m 299 b.center.Z += c.Z * m 300 b.mass += m 301 } 302 b.center.X /= b.mass 303 b.center.Y /= b.mass 304 b.center.Z /= b.mass 305 return b.center, b.mass 306 } 307 308 // forceOn returns a force vector on p given p's mass m and the force 309 // calculation function, using the Barnes-Hut theta approximation parameter. 310 func (b *bucket) forceOn(p Particle3, pt r3.Vec, m, theta float64, f Force3) (vector r3.Vec) { 311 s := ((b.bounds.Max.X - b.bounds.Min.X) + (b.bounds.Max.Y - b.bounds.Min.Y) + (b.bounds.Max.Z - b.bounds.Min.Z)) / 3 312 d := math.Hypot(math.Hypot(pt.X-b.center.X, pt.Y-b.center.Y), pt.Z-b.center.Z) 313 if s/d < theta || b.particle != nil { 314 return f(p, b.particle, m, b.mass, b.center.Sub(pt)) 315 } 316 317 var v r3.Vec 318 for _, d := range &b.nodes { 319 if d == nil { 320 continue 321 } 322 v = v.Add(d.forceOn(p, pt, m, theta, f)) 323 } 324 return v 325 }