github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/spatial/r2/vector.go (about) 1 // Copyright ©2019 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package r2 6 7 import "math" 8 9 // Vec is a 2D vector. 10 type Vec struct { 11 X, Y float64 12 } 13 14 // Add returns the vector sum of p and q. 15 func Add(p, q Vec) Vec { 16 return Vec{ 17 X: p.X + q.X, 18 Y: p.Y + q.Y, 19 } 20 } 21 22 // Sub returns the vector sum of p and -q. 23 func Sub(p, q Vec) Vec { 24 return Vec{ 25 X: p.X - q.X, 26 Y: p.Y - q.Y, 27 } 28 } 29 30 // Scale returns the vector p scaled by f. 31 func Scale(f float64, p Vec) Vec { 32 return Vec{ 33 X: f * p.X, 34 Y: f * p.Y, 35 } 36 } 37 38 // Dot returns the dot product p·q. 39 func Dot(p, q Vec) float64 { 40 return p.X*q.X + p.Y*q.Y 41 } 42 43 // Cross returns the cross product p×q. 44 func Cross(p, q Vec) float64 { 45 return p.X*q.Y - p.Y*q.X 46 } 47 48 // Rotate returns a new vector, rotated by alpha around the provided point, q. 49 func Rotate(p Vec, alpha float64, q Vec) Vec { 50 return NewRotation(alpha, q).Rotate(p) 51 } 52 53 // Norm returns the Euclidean norm of p 54 // |p| = sqrt(p_x^2 + p_y^2). 55 func Norm(p Vec) float64 { 56 return math.Hypot(p.X, p.Y) 57 } 58 59 // Norm returns the Euclidean squared norm of p 60 // |p|^2 = p_x^2 + p_y^2. 61 func Norm2(p Vec) float64 { 62 return p.X*p.X + p.Y*p.Y 63 } 64 65 // Unit returns the unit vector colinear to p. 66 // Unit returns {NaN,NaN} for the zero vector. 67 func Unit(p Vec) Vec { 68 if p.X == 0 && p.Y == 0 { 69 return Vec{X: math.NaN(), Y: math.NaN()} 70 } 71 return Scale(1/Norm(p), p) 72 } 73 74 // Cos returns the cosine of the opening angle between p and q. 75 func Cos(p, q Vec) float64 { 76 return Dot(p, q) / (Norm(p) * Norm(q)) 77 } 78 79 // Box is a 2D bounding box. 80 type Box struct { 81 Min, Max Vec 82 } 83 84 // Rotation describes a rotation in 2D. 85 type Rotation struct { 86 sin, cos float64 87 p Vec 88 } 89 90 // NewRotation creates a rotation by alpha, around p. 91 func NewRotation(alpha float64, p Vec) Rotation { 92 if alpha == 0 { 93 return Rotation{sin: 0, cos: 1, p: p} 94 } 95 sin, cos := math.Sincos(alpha) 96 return Rotation{sin: sin, cos: cos, p: p} 97 } 98 99 // Rotate returns the rotated vector according to the definition of rot. 100 func (r Rotation) Rotate(p Vec) Vec { 101 if r.isIdentity() { 102 return p 103 } 104 o := Sub(p, r.p) 105 return Add(Vec{ 106 X: (o.X*r.cos - o.Y*r.sin), 107 Y: (o.X*r.sin + o.Y*r.cos), 108 }, r.p) 109 } 110 111 func (r Rotation) isIdentity() bool { 112 return r.sin == 0 && r.cos == 1 113 }