github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/spatial/r3/vector.go (about) 1 // Copyright ©2019 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package r3 6 7 import ( 8 "math" 9 10 "github.com/jingcheng-WU/gonum/num/quat" 11 ) 12 13 // Vec is a 3D vector. 14 type Vec struct { 15 X, Y, Z float64 16 } 17 18 // Add returns the vector sum of p and q. 19 func Add(p, q Vec) Vec { 20 return Vec{ 21 X: p.X + q.X, 22 Y: p.Y + q.Y, 23 Z: p.Z + q.Z, 24 } 25 } 26 27 // Sub returns the vector sum of p and -q. 28 func Sub(p, q Vec) Vec { 29 return Vec{ 30 X: p.X - q.X, 31 Y: p.Y - q.Y, 32 Z: p.Z - q.Z, 33 } 34 } 35 36 // Scale returns the vector p scaled by f. 37 func Scale(f float64, p Vec) Vec { 38 return Vec{ 39 X: f * p.X, 40 Y: f * p.Y, 41 Z: f * p.Z, 42 } 43 } 44 45 // Dot returns the dot product p·q. 46 func Dot(p, q Vec) float64 { 47 return p.X*q.X + p.Y*q.Y + p.Z*q.Z 48 } 49 50 // Cross returns the cross product p×q. 51 func Cross(p, q Vec) Vec { 52 return Vec{ 53 p.Y*q.Z - p.Z*q.Y, 54 p.Z*q.X - p.X*q.Z, 55 p.X*q.Y - p.Y*q.X, 56 } 57 } 58 59 // Rotate returns a new vector, rotated by alpha around the provided axis. 60 func Rotate(p Vec, alpha float64, axis Vec) Vec { 61 return NewRotation(alpha, axis).Rotate(p) 62 } 63 64 // Norm returns the Euclidean norm of p 65 // |p| = sqrt(p_x^2 + p_y^2 + p_z^2). 66 func Norm(p Vec) float64 { 67 return math.Hypot(p.X, math.Hypot(p.Y, p.Z)) 68 } 69 70 // Norm returns the Euclidean squared norm of p 71 // |p|^2 = p_x^2 + p_y^2 + p_z^2. 72 func Norm2(p Vec) float64 { 73 return p.X*p.X + p.Y*p.Y + p.Z*p.Z 74 } 75 76 // Unit returns the unit vector colinear to p. 77 // Unit returns {NaN,NaN,NaN} for the zero vector. 78 func Unit(p Vec) Vec { 79 if p.X == 0 && p.Y == 0 && p.Z == 0 { 80 return Vec{X: math.NaN(), Y: math.NaN(), Z: math.NaN()} 81 } 82 return Scale(1/Norm(p), p) 83 } 84 85 // Cos returns the cosine of the opening angle between p and q. 86 func Cos(p, q Vec) float64 { 87 return Dot(p, q) / (Norm(p) * Norm(q)) 88 } 89 90 // Box is a 3D bounding box. 91 type Box struct { 92 Min, Max Vec 93 } 94 95 // TODO: possibly useful additions to the current rotation API: 96 // - create rotations from Euler angles (NewRotationFromEuler?) 97 // - create rotations from rotation matrices (NewRotationFromMatrix?) 98 // - return the equivalent Euler angles from a Rotation 99 // - return the equivalent rotation matrix from a Rotation 100 // 101 // Euler angles have issues (see [1] for a discussion). 102 // We should think carefully before adding them in. 103 // [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ 104 105 // Rotation describes a rotation in space. 106 type Rotation quat.Number 107 108 // NewRotation creates a rotation by alpha, around axis. 109 func NewRotation(alpha float64, axis Vec) Rotation { 110 if alpha == 0 { 111 return Rotation{Real: 1} 112 } 113 q := raise(axis) 114 sin, cos := math.Sincos(0.5 * alpha) 115 q = quat.Scale(sin/quat.Abs(q), q) 116 q.Real += cos 117 if len := quat.Abs(q); len != 1 { 118 q = quat.Scale(1/len, q) 119 } 120 121 return Rotation(q) 122 } 123 124 // Rotate returns the rotated vector according to the definition of rot. 125 func (r Rotation) Rotate(p Vec) Vec { 126 if r.isIdentity() { 127 return p 128 } 129 qq := quat.Number(r) 130 pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq)) 131 return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag} 132 } 133 134 func (r Rotation) isIdentity() bool { 135 return r == Rotation{Real: 1} 136 } 137 138 func raise(p Vec) quat.Number { 139 return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z} 140 }