github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/stat/cca_test.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package stat_test 6 7 import ( 8 "testing" 9 10 "github.com/jingcheng-WU/gonum/floats" 11 "github.com/jingcheng-WU/gonum/mat" 12 "github.com/jingcheng-WU/gonum/stat" 13 ) 14 15 func TestCanonicalCorrelations(t *testing.T) { 16 tests: 17 for i, test := range []struct { 18 xdata mat.Matrix 19 ydata mat.Matrix 20 weights []float64 21 wantCorrs []float64 22 wantpVecs *mat.Dense 23 wantqVecs *mat.Dense 24 wantphiVs *mat.Dense 25 wantpsiVs *mat.Dense 26 epsilon float64 27 }{ 28 // Test results verified using R. 29 { // Truncated iris data, Sepal vs Petal measurements. 30 xdata: mat.NewDense(10, 2, []float64{ 31 5.1, 3.5, 32 4.9, 3.0, 33 4.7, 3.2, 34 4.6, 3.1, 35 5.0, 3.6, 36 5.4, 3.9, 37 4.6, 3.4, 38 5.0, 3.4, 39 4.4, 2.9, 40 4.9, 3.1, 41 }), 42 ydata: mat.NewDense(10, 2, []float64{ 43 1.4, 0.2, 44 1.4, 0.2, 45 1.3, 0.2, 46 1.5, 0.2, 47 1.4, 0.2, 48 1.7, 0.4, 49 1.4, 0.3, 50 1.5, 0.2, 51 1.4, 0.2, 52 1.5, 0.1, 53 }), 54 wantCorrs: []float64{0.7250624174504773, 0.5547679185730191}, 55 wantpVecs: mat.NewDense(2, 2, []float64{ 56 0.0765914610875867, 0.9970625597666721, 57 0.9970625597666721, -0.0765914610875868, 58 }), 59 wantqVecs: mat.NewDense(2, 2, []float64{ 60 0.3075184850910837, 0.9515421069649439, 61 0.9515421069649439, -0.3075184850910837, 62 }), 63 wantphiVs: mat.NewDense(2, 2, []float64{ 64 -1.9794877596804641, 5.2016325219025124, 65 4.5211829944066553, -2.7263663170835697, 66 }), 67 wantpsiVs: mat.NewDense(2, 2, []float64{ 68 -0.0613084818030103, 10.8514169865438941, 69 12.7209032660734298, -7.6793888180353775, 70 }), 71 epsilon: 1e-12, 72 }, 73 // Test results compared to those results presented in examples by 74 // Koch, Inge. Analysis of multivariate and high-dimensional data. 75 // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 76 { // ASA Car Exposition Data of Ramos and Donoho (1983) 77 // Displacement, Horsepower, Weight 78 xdata: carData.Slice(0, 392, 0, 3), 79 // Acceleration, MPG 80 ydata: carData.Slice(0, 392, 3, 5), 81 wantCorrs: []float64{0.8782187384352336, 0.6328187219216761}, 82 wantpVecs: mat.NewDense(3, 2, []float64{ 83 0.3218296374829181, 0.3947540257657075, 84 0.4162807660635797, 0.7573719053303306, 85 0.8503740401982725, -0.5201509936144236, 86 }), 87 wantqVecs: mat.NewDense(2, 2, []float64{ 88 -0.5161984172278830, -0.8564690269072364, 89 -0.8564690269072364, 0.5161984172278830, 90 }), 91 wantphiVs: mat.NewDense(3, 2, []float64{ 92 0.0025033152994308, 0.0047795464118615, 93 0.0201923608080173, 0.0409150208725958, 94 -0.0000247374128745, -0.0026766435161875, 95 }), 96 wantpsiVs: mat.NewDense(2, 2, []float64{ 97 -0.1666196759760772, -0.3637393866139658, 98 -0.0915512109649727, 0.1077863777929168, 99 }), 100 epsilon: 1e-12, 101 }, 102 // Test results compared to those results presented in examples by 103 // Koch, Inge. Analysis of multivariate and high-dimensional data. 104 // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 105 { // Boston Housing Data of Harrison and Rubinfeld (1978) 106 // Per capita crime rate by town, 107 // Proportion of non-retail business acres per town, 108 // Nitric oxide concentration (parts per 10 million), 109 // Weighted distances to Boston employment centres, 110 // Index of accessibility to radial highways, 111 // Pupil-teacher ratio by town, Proportion of blacks by town 112 xdata: bostonData.Slice(0, 506, 0, 7), 113 // Average number of rooms per dwelling, 114 // Proportion of owner-occupied units built prior to 1940, 115 // Full-value property-tax rate per $10000, 116 // Median value of owner-occupied homes in $1000s 117 ydata: bostonData.Slice(0, 506, 7, 11), 118 wantCorrs: []float64{0.9451239443886021, 0.6786622733370654, 0.5714338361583764, 0.2009739704710440}, 119 wantpVecs: mat.NewDense(7, 4, []float64{ 120 -0.2574391924541896, -0.015847751662118038, -0.21221699346310258, -0.09457338038947205, 121 -0.48365944300184865, -0.3837101908138455, -0.14744483174159395, 0.6597324886718278, 122 -0.08007763658732961, -0.34935567428092285, -0.3287336458109394, -0.2862040444334662, 123 0.127758636038638, 0.7337427663667616, -0.4851134819036985, 0.22479648659701942, 124 -0.6969432006136685, 0.43417487760028844, 0.360287288763638, 0.029066160862628414, 125 -0.0990903250057202, -0.05034112154538474, -0.6384330631742202, 0.10223671362182897, 126 0.42604599637650303, -0.032333435130815824, 0.22895275160308087, 0.6419232947608798, 127 }), 128 wantqVecs: mat.NewDense(4, 4, []float64{ 129 0.018166050236326788, 0.1583489460479047, 0.006672357764289544, -0.9871935400650647, 130 -0.23476990459861324, -0.9483314614936598, 0.14624205056313114, -0.1554470767919039, 131 -0.9700704038477144, 0.24060717410000537, 0.025183898422704167, 0.020913407435834964, 132 0.05930006823184807, 0.13304600030976868, 0.9889057151969495, 0.029116149472076858, 133 }), 134 wantphiVs: mat.NewDense(7, 4, []float64{ 135 -0.002746223410819314, -0.009344451350088911, -0.04896439327142919, -0.015496718980582016, 136 -0.042856445527953785, 0.024170870211944927, -0.036072347209397136, 0.18389832305881182, 137 -1.2248435648802678, -5.603092136472504, -5.809414458379886, -4.792681219042103, 138 -0.00436848250946508, 0.34241011649776265, -0.4469961215717922, 0.11501618143536857, 139 -0.07415340695219563, 0.11931357949236807, 0.1115518305471455, 0.002163875832307984, 140 -0.023327032310162924, -0.1046330818178401, -0.38530459750774165, -0.016092787010290065, 141 0.00012930513878583387, -0.0004540746921447011, 0.0030296315865439264, 0.008189547797465318, 142 }), 143 wantpsiVs: mat.NewDense(4, 4, []float64{ 144 0.030159336201738367, 0.3002219289647159, -0.08782173775936601, -1.9583226531517122, 145 -0.00654831040738931, -0.03922120867162458, 0.011757077620998818, -0.006111306448187141, 146 -0.0052075523350125505, 0.004577020045295936, 0.0022762313289591976, 0.0008441873006823151, 147 0.0020111735096325924, -0.0037352799829939247, 0.12925780716217938, 0.10377090563297825, 148 }), 149 epsilon: 1e-12, 150 }, 151 } { 152 var cc stat.CC 153 var corrs []float64 154 var pVecs, qVecs mat.Dense 155 var phiVs, psiVs mat.Dense 156 for j := 0; j < 2; j++ { 157 err := cc.CanonicalCorrelations(test.xdata, test.ydata, test.weights) 158 if err != nil { 159 t.Errorf("%d use %d: unexpected error: %v", i, j, err) 160 continue tests 161 } 162 163 corrs = cc.CorrsTo(corrs) 164 cc.LeftTo(&pVecs, true) 165 cc.RightTo(&qVecs, true) 166 cc.LeftTo(&phiVs, false) 167 cc.RightTo(&psiVs, false) 168 169 if !floats.EqualApprox(corrs, test.wantCorrs, test.epsilon) { 170 t.Errorf("%d use %d: unexpected variance result got:%v, want:%v", 171 i, j, corrs, test.wantCorrs) 172 } 173 if !mat.EqualApprox(&pVecs, test.wantpVecs, test.epsilon) { 174 t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", 175 i, j, mat.Formatted(&pVecs), mat.Formatted(test.wantpVecs)) 176 } 177 if !mat.EqualApprox(&qVecs, test.wantqVecs, test.epsilon) { 178 t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", 179 i, j, mat.Formatted(&qVecs), mat.Formatted(test.wantqVecs)) 180 } 181 if !mat.EqualApprox(&phiVs, test.wantphiVs, test.epsilon) { 182 t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", 183 i, j, mat.Formatted(&phiVs), mat.Formatted(test.wantphiVs)) 184 } 185 if !mat.EqualApprox(&psiVs, test.wantpsiVs, test.epsilon) { 186 t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v", 187 i, j, mat.Formatted(&psiVs), mat.Formatted(test.wantpsiVs)) 188 } 189 } 190 } 191 }