github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/stat/distuv/binomial.go (about)

     1  // Copyright ©2018 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package distuv
     6  
     7  import (
     8  	"math"
     9  
    10  	"golang.org/x/exp/rand"
    11  
    12  	"github.com/jingcheng-WU/gonum/mathext"
    13  	"github.com/jingcheng-WU/gonum/stat/combin"
    14  )
    15  
    16  // Binomial implements the binomial distribution, a discrete probability distribution
    17  // that expresses the probability of a given number of successful Bernoulli trials
    18  // out of a total of n, each with success probability p.
    19  // The binomial distribution has the density function:
    20  //  f(k) = (n choose k) p^k (1-p)^(n-k)
    21  // For more information, see https://en.wikipedia.org/wiki/Binomial_distribution.
    22  type Binomial struct {
    23  	// N is the total number of Bernoulli trials. N must be greater than 0.
    24  	N float64
    25  	// P is the probability of success in any given trial. P must be in [0, 1].
    26  	P float64
    27  
    28  	Src rand.Source
    29  }
    30  
    31  // CDF computes the value of the cumulative distribution function at x.
    32  func (b Binomial) CDF(x float64) float64 {
    33  	if x < 0 {
    34  		return 0
    35  	}
    36  	if x >= b.N {
    37  		return 1
    38  	}
    39  	x = math.Floor(x)
    40  	return mathext.RegIncBeta(b.N-x, x+1, 1-b.P)
    41  }
    42  
    43  // ExKurtosis returns the excess kurtosis of the distribution.
    44  func (b Binomial) ExKurtosis() float64 {
    45  	v := b.P * (1 - b.P)
    46  	return (1 - 6*v) / (b.N * v)
    47  }
    48  
    49  // LogProb computes the natural logarithm of the value of the probability
    50  // density function at x.
    51  func (b Binomial) LogProb(x float64) float64 {
    52  	if x < 0 || x > b.N || math.Floor(x) != x {
    53  		return math.Inf(-1)
    54  	}
    55  	lb := combin.LogGeneralizedBinomial(b.N, x)
    56  	return lb + x*math.Log(b.P) + (b.N-x)*math.Log(1-b.P)
    57  }
    58  
    59  // Mean returns the mean of the probability distribution.
    60  func (b Binomial) Mean() float64 {
    61  	return b.N * b.P
    62  }
    63  
    64  // NumParameters returns the number of parameters in the distribution.
    65  func (Binomial) NumParameters() int {
    66  	return 2
    67  }
    68  
    69  // Prob computes the value of the probability density function at x.
    70  func (b Binomial) Prob(x float64) float64 {
    71  	return math.Exp(b.LogProb(x))
    72  }
    73  
    74  // Rand returns a random sample drawn from the distribution.
    75  func (b Binomial) Rand() float64 {
    76  	// NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
    77  	// p. 295-6
    78  	// http://www.aip.de/groups/soe/local/numres/bookcpdf/c7-3.pdf
    79  
    80  	runif := rand.Float64
    81  	rexp := rand.ExpFloat64
    82  	if b.Src != nil {
    83  		rnd := rand.New(b.Src)
    84  		runif = rnd.Float64
    85  		rexp = rnd.ExpFloat64
    86  	}
    87  
    88  	p := b.P
    89  	if p > 0.5 {
    90  		p = 1 - p
    91  	}
    92  	am := b.N * p
    93  
    94  	if b.N < 25 {
    95  		// Use direct method.
    96  		bnl := 0.0
    97  		for i := 0; i < int(b.N); i++ {
    98  			if runif() < p {
    99  				bnl++
   100  			}
   101  		}
   102  		if p != b.P {
   103  			return b.N - bnl
   104  		}
   105  		return bnl
   106  	}
   107  
   108  	if am < 1 {
   109  		// Use rejection method with Poisson proposal.
   110  		const logM = 2.6e-2 // constant for rejection sampling (https://en.wikipedia.org/wiki/Rejection_sampling)
   111  		var bnl float64
   112  		z := -p
   113  		pclog := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z) // Padé approximant of log(1 + x)
   114  		for {
   115  			bnl = 0.0
   116  			t := 0.0
   117  			for i := 0; i < int(b.N); i++ {
   118  				t += rexp()
   119  				if t >= am {
   120  					break
   121  				}
   122  				bnl++
   123  			}
   124  			bnlc := b.N - bnl
   125  			z = -bnl / b.N
   126  			log1p := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z)
   127  			t = (bnlc+0.5)*log1p + bnl - bnlc*pclog + 1/(12*bnlc) - am + logM // Uses Stirling's expansion of log(n!)
   128  			if rexp() >= t {
   129  				break
   130  			}
   131  		}
   132  		if p != b.P {
   133  			return b.N - bnl
   134  		}
   135  		return bnl
   136  	}
   137  	// Original algorithm samples from a Poisson distribution with the
   138  	// appropriate expected value. However, the Poisson approximation is
   139  	// asymptotic such that the absolute deviation in probability is O(1/n).
   140  	// Rejection sampling produces exact variates with at worst less than 3%
   141  	// rejection with miminal additional computation.
   142  
   143  	// Use rejection method with Cauchy proposal.
   144  	g, _ := math.Lgamma(b.N + 1)
   145  	plog := math.Log(p)
   146  	pclog := math.Log1p(-p)
   147  	sq := math.Sqrt(2 * am * (1 - p))
   148  	for {
   149  		var em, y float64
   150  		for {
   151  			y = math.Tan(math.Pi * runif())
   152  			em = sq*y + am
   153  			if em >= 0 && em < b.N+1 {
   154  				break
   155  			}
   156  		}
   157  		em = math.Floor(em)
   158  		lg1, _ := math.Lgamma(em + 1)
   159  		lg2, _ := math.Lgamma(b.N - em + 1)
   160  		t := 1.2 * sq * (1 + y*y) * math.Exp(g-lg1-lg2+em*plog+(b.N-em)*pclog)
   161  		if runif() <= t {
   162  			if p != b.P {
   163  				return b.N - em
   164  			}
   165  			return em
   166  		}
   167  	}
   168  }
   169  
   170  // Skewness returns the skewness of the distribution.
   171  func (b Binomial) Skewness() float64 {
   172  	return (1 - 2*b.P) / b.StdDev()
   173  }
   174  
   175  // StdDev returns the standard deviation of the probability distribution.
   176  func (b Binomial) StdDev() float64 {
   177  	return math.Sqrt(b.Variance())
   178  }
   179  
   180  // Survival returns the survival function (complementary CDF) at x.
   181  func (b Binomial) Survival(x float64) float64 {
   182  	return 1 - b.CDF(x)
   183  }
   184  
   185  // Variance returns the variance of the probability distribution.
   186  func (b Binomial) Variance() float64 {
   187  	return b.N * b.P * (1 - b.P)
   188  }