github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/stat/pca_cca.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package stat 6 7 import ( 8 "errors" 9 "math" 10 11 "github.com/jingcheng-WU/gonum/floats" 12 "github.com/jingcheng-WU/gonum/mat" 13 ) 14 15 // PC is a type for computing and extracting the principal components of a 16 // matrix. The results of the principal components analysis are only valid 17 // if the call to PrincipalComponents was successful. 18 type PC struct { 19 n, d int 20 weights []float64 21 svd *mat.SVD 22 ok bool 23 } 24 25 // PrincipalComponents performs a weighted principal components analysis on the 26 // matrix of the input data which is represented as an n×d matrix a where each 27 // row is an observation and each column is a variable. 28 // 29 // PrincipalComponents centers the variables but does not scale the variance. 30 // 31 // The weights slice is used to weight the observations. If weights is nil, each 32 // weight is considered to have a value of one, otherwise the length of weights 33 // must match the number of observations or PrincipalComponents will panic. 34 // 35 // PrincipalComponents returns whether the analysis was successful. 36 func (c *PC) PrincipalComponents(a mat.Matrix, weights []float64) (ok bool) { 37 c.n, c.d = a.Dims() 38 if weights != nil && len(weights) != c.n { 39 panic("stat: len(weights) != observations") 40 } 41 42 c.svd, c.ok = svdFactorizeCentered(c.svd, a, weights) 43 if c.ok { 44 c.weights = append(c.weights[:0], weights...) 45 } 46 return c.ok 47 } 48 49 // VectorsTo returns the component direction vectors of a principal components 50 // analysis. The vectors are returned in the columns of a d×min(n, d) matrix. 51 // 52 // If dst is empty, VectorsTo will resize dst to be d×min(n, d). When dst is 53 // non-empty, VectorsTo will panic if dst is not d×min(n, d). VectorsTo will also 54 // panic if the receiver does not contain a successful PC. 55 func (c *PC) VectorsTo(dst *mat.Dense) { 56 if !c.ok { 57 panic("stat: use of unsuccessful principal components analysis") 58 } 59 60 if dst.IsEmpty() { 61 dst.ReuseAs(c.d, min(c.n, c.d)) 62 } else { 63 if d, n := dst.Dims(); d != c.d || n != min(c.n, c.d) { 64 panic(mat.ErrShape) 65 } 66 } 67 c.svd.VTo(dst) 68 } 69 70 // VarsTo returns the column variances of the principal component scores, 71 // b * vecs, where b is a matrix with centered columns. Variances are returned 72 // in descending order. 73 // If dst is not nil it is used to store the variances and returned. 74 // Vars will panic if the receiver has not successfully performed a principal 75 // components analysis or dst is not nil and the length of dst is not min(n, d). 76 func (c *PC) VarsTo(dst []float64) []float64 { 77 if !c.ok { 78 panic("stat: use of unsuccessful principal components analysis") 79 } 80 if dst != nil && len(dst) != min(c.n, c.d) { 81 panic("stat: length of slice does not match analysis") 82 } 83 84 dst = c.svd.Values(dst) 85 var f float64 86 if c.weights == nil { 87 f = 1 / float64(c.n-1) 88 } else { 89 f = 1 / (floats.Sum(c.weights) - 1) 90 } 91 for i, v := range dst { 92 dst[i] = f * v * v 93 } 94 return dst 95 } 96 97 func min(a, b int) int { 98 if a < b { 99 return a 100 } 101 return b 102 } 103 104 // CC is a type for computing the canonical correlations of a pair of matrices. 105 // The results of the canonical correlation analysis are only valid 106 // if the call to CanonicalCorrelations was successful. 107 type CC struct { 108 // n is the number of observations used to 109 // construct the canonical correlations. 110 n int 111 112 // xd and yd are used for size checks. 113 xd, yd int 114 115 x, y, c *mat.SVD 116 ok bool 117 } 118 119 // CanonicalCorrelations performs a canonical correlation analysis of the 120 // input data x and y, columns of which should be interpretable as two sets 121 // of measurements on the same observations (rows). These observations are 122 // optionally weighted by weights. The result of the analysis is stored in 123 // the receiver if the analysis is successful. 124 // 125 // Canonical correlation analysis finds associations between two sets of 126 // variables on the same observations by finding linear combinations of the two 127 // sphered datasets that maximize the correlation between them. 128 // 129 // Some notation: let Xc and Yc denote the centered input data matrices x 130 // and y (column means subtracted from each column), let Sx and Sy denote the 131 // sample covariance matrices within x and y respectively, and let Sxy denote 132 // the covariance matrix between x and y. The sphered data can then be expressed 133 // as Xc * Sx^{-1/2} and Yc * Sy^{-1/2} respectively, and the correlation matrix 134 // between the sphered data is called the canonical correlation matrix, 135 // Sx^{-1/2} * Sxy * Sy^{-1/2}. In cases where S^{-1/2} is ambiguous for some 136 // covariance matrix S, S^{-1/2} is taken to be E * D^{-1/2} * Eᵀ where S can 137 // be eigendecomposed as S = E * D * Eᵀ. 138 // 139 // The canonical correlations are the correlations between the corresponding 140 // pairs of canonical variables and can be obtained with c.Corrs(). Canonical 141 // variables can be obtained by projecting the sphered data into the left and 142 // right eigenvectors of the canonical correlation matrix, and these 143 // eigenvectors can be obtained with c.Left(m, true) and c.Right(m, true) 144 // respectively. The canonical variables can also be obtained directly from the 145 // centered raw data by using the back-transformed eigenvectors which can be 146 // obtained with c.Left(m, false) and c.Right(m, false) respectively. 147 // 148 // The first pair of left and right eigenvectors of the canonical correlation 149 // matrix can be interpreted as directions into which the respective sphered 150 // data can be projected such that the correlation between the two projections 151 // is maximized. The second pair and onwards solve the same optimization but 152 // under the constraint that they are uncorrelated (orthogonal in sphered space) 153 // to previous projections. 154 // 155 // CanonicalCorrelations will panic if the inputs x and y do not have the same 156 // number of rows. 157 // 158 // The slice weights is used to weight the observations. If weights is nil, each 159 // weight is considered to have a value of one, otherwise the length of weights 160 // must match the number of observations (rows of both x and y) or 161 // CanonicalCorrelations will panic. 162 // 163 // More details can be found at 164 // https://en.wikipedia.org/wiki/Canonical_correlation 165 // or in Chapter 3 of 166 // Koch, Inge. Analysis of multivariate and high-dimensional data. 167 // Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939 168 func (c *CC) CanonicalCorrelations(x, y mat.Matrix, weights []float64) error { 169 var yn int 170 c.n, c.xd = x.Dims() 171 yn, c.yd = y.Dims() 172 if c.n != yn { 173 panic("stat: unequal number of observations") 174 } 175 if weights != nil && len(weights) != c.n { 176 panic("stat: len(weights) != observations") 177 } 178 179 // Center and factorize x and y. 180 c.x, c.ok = svdFactorizeCentered(c.x, x, weights) 181 if !c.ok { 182 return errors.New("stat: failed to factorize x") 183 } 184 c.y, c.ok = svdFactorizeCentered(c.y, y, weights) 185 if !c.ok { 186 return errors.New("stat: failed to factorize y") 187 } 188 var xu, xv, yu, yv mat.Dense 189 c.x.UTo(&xu) 190 c.x.VTo(&xv) 191 c.y.UTo(&yu) 192 c.y.VTo(&yv) 193 194 // Calculate and factorise the canonical correlation matrix. 195 var ccor mat.Dense 196 ccor.Product(&xv, xu.T(), &yu, yv.T()) 197 if c.c == nil { 198 c.c = &mat.SVD{} 199 } 200 c.ok = c.c.Factorize(&ccor, mat.SVDThin) 201 if !c.ok { 202 return errors.New("stat: failed to factorize ccor") 203 } 204 return nil 205 } 206 207 // CorrsTo returns the canonical correlations, using dst if it is not nil. 208 // If dst is not nil and len(dst) does not match the number of columns in 209 // the y input matrix, Corrs will panic. 210 func (c *CC) CorrsTo(dst []float64) []float64 { 211 if !c.ok { 212 panic("stat: canonical correlations missing or invalid") 213 } 214 215 if dst != nil && len(dst) != c.yd { 216 panic("stat: length of destination does not match input dimension") 217 } 218 return c.c.Values(dst) 219 } 220 221 // LeftTo returns the left eigenvectors of the canonical correlation matrix if 222 // spheredSpace is true. If spheredSpace is false it returns these eigenvectors 223 // back-transformed to the original data space. 224 // 225 // If dst is empty, LeftTo will resize dst to be xd×yd. When dst is 226 // non-empty, LeftTo will panic if dst is not xd×yd. LeftTo will also 227 // panic if the receiver does not contain a successful CC. 228 func (c *CC) LeftTo(dst *mat.Dense, spheredSpace bool) { 229 if !c.ok || c.n < 2 { 230 panic("stat: canonical correlations missing or invalid") 231 } 232 233 if dst.IsEmpty() { 234 dst.ReuseAs(c.xd, c.yd) 235 } else { 236 if d, n := dst.Dims(); d != c.xd || n != c.yd { 237 panic(mat.ErrShape) 238 } 239 } 240 c.c.UTo(dst) 241 if spheredSpace { 242 return 243 } 244 245 xs := c.x.Values(nil) 246 xv := &mat.Dense{} 247 c.x.VTo(xv) 248 249 scaleColsReciSqrt(xv, xs) 250 251 dst.Product(xv, xv.T(), dst) 252 dst.Scale(math.Sqrt(float64(c.n-1)), dst) 253 } 254 255 // RightTo returns the right eigenvectors of the canonical correlation matrix if 256 // spheredSpace is true. If spheredSpace is false it returns these eigenvectors 257 // back-transformed to the original data space. 258 // 259 // If dst is empty, RightTo will resize dst to be yd×yd. When dst is 260 // non-empty, RightTo will panic if dst is not yd×yd. RightTo will also 261 // panic if the receiver does not contain a successful CC. 262 func (c *CC) RightTo(dst *mat.Dense, spheredSpace bool) { 263 if !c.ok || c.n < 2 { 264 panic("stat: canonical correlations missing or invalid") 265 } 266 267 if dst.IsEmpty() { 268 dst.ReuseAs(c.yd, c.yd) 269 } else { 270 if d, n := dst.Dims(); d != c.yd || n != c.yd { 271 panic(mat.ErrShape) 272 } 273 } 274 c.c.VTo(dst) 275 if spheredSpace { 276 return 277 } 278 279 ys := c.y.Values(nil) 280 yv := &mat.Dense{} 281 c.y.VTo(yv) 282 283 scaleColsReciSqrt(yv, ys) 284 285 dst.Product(yv, yv.T(), dst) 286 dst.Scale(math.Sqrt(float64(c.n-1)), dst) 287 } 288 289 func svdFactorizeCentered(work *mat.SVD, m mat.Matrix, weights []float64) (svd *mat.SVD, ok bool) { 290 n, d := m.Dims() 291 centered := mat.NewDense(n, d, nil) 292 col := make([]float64, n) 293 for j := 0; j < d; j++ { 294 mat.Col(col, j, m) 295 floats.AddConst(-Mean(col, weights), col) 296 centered.SetCol(j, col) 297 } 298 for i, w := range weights { 299 floats.Scale(math.Sqrt(w), centered.RawRowView(i)) 300 } 301 if work == nil { 302 work = &mat.SVD{} 303 } 304 ok = work.Factorize(centered, mat.SVDThin) 305 return work, ok 306 } 307 308 // scaleColsReciSqrt scales the columns of cols 309 // by the reciprocal square-root of vals. 310 func scaleColsReciSqrt(cols *mat.Dense, vals []float64) { 311 if cols == nil { 312 panic("stat: input nil") 313 } 314 n, d := cols.Dims() 315 if len(vals) != d { 316 panic("stat: input length mismatch") 317 } 318 col := make([]float64, n) 319 for j := 0; j < d; j++ { 320 mat.Col(col, j, cols) 321 floats.Scale(math.Sqrt(1/vals[j]), col) 322 cols.SetCol(j, col) 323 } 324 }