github.com/jingcheng-WU/gonum@v0.9.1-0.20210323123734-f1a2a11a8f7b/stat/sampleuv/example_burnin_test.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package sampleuv_test 6 7 import ( 8 "github.com/jingcheng-WU/gonum/stat/distuv" 9 "github.com/jingcheng-WU/gonum/stat/sampleuv" 10 ) 11 12 type ProposalDist struct { 13 Sigma float64 14 } 15 16 func (p ProposalDist) ConditionalRand(y float64) float64 { 17 return distuv.Normal{Mu: y, Sigma: p.Sigma}.Rand() 18 } 19 20 func (p ProposalDist) ConditionalLogProb(x, y float64) float64 { 21 return distuv.Normal{Mu: y, Sigma: p.Sigma}.LogProb(x) 22 } 23 24 func ExampleMetropolisHastings_burnin() { 25 n := 1000 // The number of samples to generate. 26 burnin := 50 // Number of samples to ignore at the start. 27 var initial float64 28 // target is the distribution from which we would like to sample. 29 target := distuv.Weibull{K: 5, Lambda: 0.5} 30 // proposal is the proposal distribution. Here, we are choosing 31 // a tight Gaussian distribution around the current location. In 32 // typical problems, if Sigma is too small, it takes a lot of samples 33 // to move around the distribution. If Sigma is too large, it can be hard 34 // to find acceptable samples. 35 proposal := ProposalDist{Sigma: 0.2} 36 37 samples := make([]float64, n) 38 mh := sampleuv.MetropolisHastings{Initial: initial, Target: target, Proposal: proposal, BurnIn: burnin} 39 mh.Sample(samples) 40 }