github.com/johnnyeven/libtools@v0.0.0-20191126065708-61829c1adf46/third_party/mlir/lib/IR/AffineExpr.cpp (about)

     1  //===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===//
     2  //
     3  // Copyright 2019 The MLIR Authors.
     4  //
     5  // Licensed under the Apache License, Version 2.0 (the "License");
     6  // you may not use this file except in compliance with the License.
     7  // You may obtain a copy of the License at
     8  //
     9  //   http://www.apache.org/licenses/LICENSE-2.0
    10  //
    11  // Unless required by applicable law or agreed to in writing, software
    12  // distributed under the License is distributed on an "AS IS" BASIS,
    13  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    14  // See the License for the specific language governing permissions and
    15  // limitations under the License.
    16  // =============================================================================
    17  
    18  #include "mlir/IR/AffineExpr.h"
    19  #include "AffineExprDetail.h"
    20  #include "mlir/IR/AffineExprVisitor.h"
    21  #include "mlir/IR/AffineMap.h"
    22  #include "mlir/IR/IntegerSet.h"
    23  #include "mlir/Support/MathExtras.h"
    24  #include "mlir/Support/STLExtras.h"
    25  #include "llvm/ADT/STLExtras.h"
    26  
    27  using namespace mlir;
    28  using namespace mlir::detail;
    29  
    30  MLIRContext *AffineExpr::getContext() const { return expr->context; }
    31  
    32  AffineExprKind AffineExpr::getKind() const {
    33    return static_cast<AffineExprKind>(expr->getKind());
    34  }
    35  
    36  /// Walk all of the AffineExprs in this subgraph in postorder.
    37  void AffineExpr::walk(std::function<void(AffineExpr)> callback) const {
    38    struct AffineExprWalker : public AffineExprVisitor<AffineExprWalker> {
    39      std::function<void(AffineExpr)> callback;
    40  
    41      AffineExprWalker(std::function<void(AffineExpr)> callback)
    42          : callback(callback) {}
    43  
    44      void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); }
    45      void visitConstantExpr(AffineConstantExpr expr) { callback(expr); }
    46      void visitDimExpr(AffineDimExpr expr) { callback(expr); }
    47      void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); }
    48    };
    49  
    50    AffineExprWalker(callback).walkPostOrder(*this);
    51  }
    52  
    53  // Dispatch affine expression construction based on kind.
    54  AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
    55                                         AffineExpr rhs) {
    56    if (kind == AffineExprKind::Add)
    57      return lhs + rhs;
    58    if (kind == AffineExprKind::Mul)
    59      return lhs * rhs;
    60    if (kind == AffineExprKind::FloorDiv)
    61      return lhs.floorDiv(rhs);
    62    if (kind == AffineExprKind::CeilDiv)
    63      return lhs.ceilDiv(rhs);
    64    if (kind == AffineExprKind::Mod)
    65      return lhs % rhs;
    66  
    67    llvm_unreachable("unknown binary operation on affine expressions");
    68  }
    69  
    70  /// This method substitutes any uses of dimensions and symbols (e.g.
    71  /// dim#0 with dimReplacements[0]) and returns the modified expression tree.
    72  AffineExpr
    73  AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
    74                                    ArrayRef<AffineExpr> symReplacements) const {
    75    switch (getKind()) {
    76    case AffineExprKind::Constant:
    77      return *this;
    78    case AffineExprKind::DimId: {
    79      unsigned dimId = cast<AffineDimExpr>().getPosition();
    80      if (dimId >= dimReplacements.size())
    81        return *this;
    82      return dimReplacements[dimId];
    83    }
    84    case AffineExprKind::SymbolId: {
    85      unsigned symId = cast<AffineSymbolExpr>().getPosition();
    86      if (symId >= symReplacements.size())
    87        return *this;
    88      return symReplacements[symId];
    89    }
    90    case AffineExprKind::Add:
    91    case AffineExprKind::Mul:
    92    case AffineExprKind::FloorDiv:
    93    case AffineExprKind::CeilDiv:
    94    case AffineExprKind::Mod:
    95      auto binOp = cast<AffineBinaryOpExpr>();
    96      auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
    97      auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
    98      auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
    99      if (newLHS == lhs && newRHS == rhs)
   100        return *this;
   101      return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
   102    }
   103    llvm_unreachable("Unknown AffineExpr");
   104  }
   105  
   106  /// Returns true if this expression is made out of only symbols and
   107  /// constants (no dimensional identifiers).
   108  bool AffineExpr::isSymbolicOrConstant() const {
   109    switch (getKind()) {
   110    case AffineExprKind::Constant:
   111      return true;
   112    case AffineExprKind::DimId:
   113      return false;
   114    case AffineExprKind::SymbolId:
   115      return true;
   116  
   117    case AffineExprKind::Add:
   118    case AffineExprKind::Mul:
   119    case AffineExprKind::FloorDiv:
   120    case AffineExprKind::CeilDiv:
   121    case AffineExprKind::Mod: {
   122      auto expr = this->cast<AffineBinaryOpExpr>();
   123      return expr.getLHS().isSymbolicOrConstant() &&
   124             expr.getRHS().isSymbolicOrConstant();
   125    }
   126    }
   127    llvm_unreachable("Unknown AffineExpr");
   128  }
   129  
   130  /// Returns true if this is a pure affine expression, i.e., multiplication,
   131  /// floordiv, ceildiv, and mod is only allowed w.r.t constants.
   132  bool AffineExpr::isPureAffine() const {
   133    switch (getKind()) {
   134    case AffineExprKind::SymbolId:
   135    case AffineExprKind::DimId:
   136    case AffineExprKind::Constant:
   137      return true;
   138    case AffineExprKind::Add: {
   139      auto op = cast<AffineBinaryOpExpr>();
   140      return op.getLHS().isPureAffine() && op.getRHS().isPureAffine();
   141    }
   142  
   143    case AffineExprKind::Mul: {
   144      // TODO: Canonicalize the constants in binary operators to the RHS when
   145      // possible, allowing this to merge into the next case.
   146      auto op = cast<AffineBinaryOpExpr>();
   147      return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() &&
   148             (op.getLHS().template isa<AffineConstantExpr>() ||
   149              op.getRHS().template isa<AffineConstantExpr>());
   150    }
   151    case AffineExprKind::FloorDiv:
   152    case AffineExprKind::CeilDiv:
   153    case AffineExprKind::Mod: {
   154      auto op = cast<AffineBinaryOpExpr>();
   155      return op.getLHS().isPureAffine() &&
   156             op.getRHS().template isa<AffineConstantExpr>();
   157    }
   158    }
   159    llvm_unreachable("Unknown AffineExpr");
   160  }
   161  
   162  // Returns the greatest known integral divisor of this affine expression.
   163  uint64_t AffineExpr::getLargestKnownDivisor() const {
   164    AffineBinaryOpExpr binExpr(nullptr);
   165    switch (getKind()) {
   166    case AffineExprKind::SymbolId:
   167      LLVM_FALLTHROUGH;
   168    case AffineExprKind::DimId:
   169      return 1;
   170    case AffineExprKind::Constant:
   171      return std::abs(this->cast<AffineConstantExpr>().getValue());
   172    case AffineExprKind::Mul: {
   173      binExpr = this->cast<AffineBinaryOpExpr>();
   174      return binExpr.getLHS().getLargestKnownDivisor() *
   175             binExpr.getRHS().getLargestKnownDivisor();
   176    }
   177    case AffineExprKind::Add:
   178      LLVM_FALLTHROUGH;
   179    case AffineExprKind::FloorDiv:
   180    case AffineExprKind::CeilDiv:
   181    case AffineExprKind::Mod: {
   182      binExpr = cast<AffineBinaryOpExpr>();
   183      return llvm::GreatestCommonDivisor64(
   184          binExpr.getLHS().getLargestKnownDivisor(),
   185          binExpr.getRHS().getLargestKnownDivisor());
   186    }
   187    }
   188    llvm_unreachable("Unknown AffineExpr");
   189  }
   190  
   191  bool AffineExpr::isMultipleOf(int64_t factor) const {
   192    AffineBinaryOpExpr binExpr(nullptr);
   193    uint64_t l, u;
   194    switch (getKind()) {
   195    case AffineExprKind::SymbolId:
   196      LLVM_FALLTHROUGH;
   197    case AffineExprKind::DimId:
   198      return factor * factor == 1;
   199    case AffineExprKind::Constant:
   200      return cast<AffineConstantExpr>().getValue() % factor == 0;
   201    case AffineExprKind::Mul: {
   202      binExpr = cast<AffineBinaryOpExpr>();
   203      // It's probably not worth optimizing this further (to not traverse the
   204      // whole sub-tree under - it that would require a version of isMultipleOf
   205      // that on a 'false' return also returns the largest known divisor).
   206      return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 ||
   207             (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 ||
   208             (l * u) % factor == 0;
   209    }
   210    case AffineExprKind::Add:
   211    case AffineExprKind::FloorDiv:
   212    case AffineExprKind::CeilDiv:
   213    case AffineExprKind::Mod: {
   214      binExpr = cast<AffineBinaryOpExpr>();
   215      return llvm::GreatestCommonDivisor64(
   216                 binExpr.getLHS().getLargestKnownDivisor(),
   217                 binExpr.getRHS().getLargestKnownDivisor()) %
   218                 factor ==
   219             0;
   220    }
   221    }
   222    llvm_unreachable("Unknown AffineExpr");
   223  }
   224  
   225  bool AffineExpr::isFunctionOfDim(unsigned position) const {
   226    if (getKind() == AffineExprKind::DimId) {
   227      return *this == mlir::getAffineDimExpr(position, getContext());
   228    }
   229    if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) {
   230      return expr.getLHS().isFunctionOfDim(position) ||
   231             expr.getRHS().isFunctionOfDim(position);
   232    }
   233    return false;
   234  }
   235  
   236  AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr)
   237      : AffineExpr(ptr) {}
   238  AffineExpr AffineBinaryOpExpr::getLHS() const {
   239    return static_cast<ImplType *>(expr)->lhs;
   240  }
   241  AffineExpr AffineBinaryOpExpr::getRHS() const {
   242    return static_cast<ImplType *>(expr)->rhs;
   243  }
   244  
   245  AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {}
   246  unsigned AffineDimExpr::getPosition() const {
   247    return static_cast<ImplType *>(expr)->position;
   248  }
   249  
   250  static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position,
   251                                         MLIRContext *context) {
   252    auto assignCtx = [context](AffineDimExprStorage *storage) {
   253      storage->context = context;
   254    };
   255  
   256    StorageUniquer &uniquer = context->getAffineUniquer();
   257    return uniquer.get<AffineDimExprStorage>(
   258        assignCtx, static_cast<unsigned>(kind), position);
   259  }
   260  
   261  AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
   262    return getAffineDimOrSymbol(AffineExprKind::DimId, position, context);
   263  }
   264  
   265  AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr)
   266      : AffineExpr(ptr) {}
   267  unsigned AffineSymbolExpr::getPosition() const {
   268    return static_cast<ImplType *>(expr)->position;
   269  }
   270  
   271  AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
   272    return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context);
   273    ;
   274  }
   275  
   276  AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr)
   277      : AffineExpr(ptr) {}
   278  int64_t AffineConstantExpr::getValue() const {
   279    return static_cast<ImplType *>(expr)->constant;
   280  }
   281  
   282  AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
   283    auto assignCtx = [context](AffineConstantExprStorage *storage) {
   284      storage->context = context;
   285    };
   286  
   287    StorageUniquer &uniquer = context->getAffineUniquer();
   288    return uniquer.get<AffineConstantExprStorage>(
   289        assignCtx, static_cast<unsigned>(AffineExprKind::Constant), constant);
   290  }
   291  
   292  /// Simplify add expression. Return nullptr if it can't be simplified.
   293  static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
   294    auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
   295    auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
   296    // Fold if both LHS, RHS are a constant.
   297    if (lhsConst && rhsConst)
   298      return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
   299                                   lhs.getContext());
   300  
   301    // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
   302    // If only one of them is a symbolic expressions, make it the RHS.
   303    if (lhs.isa<AffineConstantExpr>() ||
   304        (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
   305      return rhs + lhs;
   306    }
   307  
   308    // At this point, if there was a constant, it would be on the right.
   309  
   310    // Addition with a zero is a noop, return the other input.
   311    if (rhsConst) {
   312      if (rhsConst.getValue() == 0)
   313        return lhs;
   314    }
   315    // Fold successive additions like (d0 + 2) + 3 into d0 + 5.
   316    auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
   317    if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
   318      if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
   319        return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
   320    }
   321  
   322    // When doing successive additions, bring constant to the right: turn (d0 + 2)
   323    // + d1 into (d0 + d1) + 2.
   324    if (lBin && lBin.getKind() == AffineExprKind::Add) {
   325      if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
   326        return lBin.getLHS() + rhs + lrhs;
   327      }
   328    }
   329  
   330    // Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This
   331    // leads to a much more efficient form when 'c' is a power of two, and in
   332    // general a more compact and readable form.
   333  
   334    // Process '(expr floordiv c) * (-c)'.
   335    AffineBinaryOpExpr rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>();
   336    if (!rBinOpExpr)
   337      return nullptr;
   338  
   339    auto lrhs = rBinOpExpr.getLHS();
   340    auto rrhs = rBinOpExpr.getRHS();
   341  
   342    // Process lrhs, which is 'expr floordiv c'.
   343    AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
   344    if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv)
   345      return nullptr;
   346  
   347    auto llrhs = lrBinOpExpr.getLHS();
   348    auto rlrhs = lrBinOpExpr.getRHS();
   349  
   350    if (lhs == llrhs && rlrhs == -rrhs) {
   351      return lhs % rlrhs;
   352    }
   353    return nullptr;
   354  }
   355  
   356  AffineExpr AffineExpr::operator+(int64_t v) const {
   357    return *this + getAffineConstantExpr(v, getContext());
   358  }
   359  AffineExpr AffineExpr::operator+(AffineExpr other) const {
   360    if (auto simplified = simplifyAdd(*this, other))
   361      return simplified;
   362  
   363    StorageUniquer &uniquer = getContext()->getAffineUniquer();
   364    return uniquer.get<AffineBinaryOpExprStorage>(
   365        /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other);
   366  }
   367  
   368  /// Simplify a multiply expression. Return nullptr if it can't be simplified.
   369  static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
   370    auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
   371    auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
   372  
   373    if (lhsConst && rhsConst)
   374      return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
   375                                   lhs.getContext());
   376  
   377    assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());
   378  
   379    // Canonicalize the mul expression so that the constant/symbolic term is the
   380    // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
   381    // constant. (Note that a constant is trivially symbolic).
   382    if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
   383      // At least one of them has to be symbolic.
   384      return rhs * lhs;
   385    }
   386  
   387    // At this point, if there was a constant, it would be on the right.
   388  
   389    // Multiplication with a one is a noop, return the other input.
   390    if (rhsConst) {
   391      if (rhsConst.getValue() == 1)
   392        return lhs;
   393      // Multiplication with zero.
   394      if (rhsConst.getValue() == 0)
   395        return rhsConst;
   396    }
   397  
   398    // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
   399    auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
   400    if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
   401      if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
   402        return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
   403    }
   404  
   405    // When doing successive multiplication, bring constant to the right: turn (d0
   406    // * 2) * d1 into (d0 * d1) * 2.
   407    if (lBin && lBin.getKind() == AffineExprKind::Mul) {
   408      if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
   409        return (lBin.getLHS() * rhs) * lrhs;
   410      }
   411    }
   412  
   413    return nullptr;
   414  }
   415  
   416  AffineExpr AffineExpr::operator*(int64_t v) const {
   417    return *this * getAffineConstantExpr(v, getContext());
   418  }
   419  AffineExpr AffineExpr::operator*(AffineExpr other) const {
   420    if (auto simplified = simplifyMul(*this, other))
   421      return simplified;
   422  
   423    StorageUniquer &uniquer = getContext()->getAffineUniquer();
   424    return uniquer.get<AffineBinaryOpExprStorage>(
   425        /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other);
   426  }
   427  
   428  // Unary minus, delegate to operator*.
   429  AffineExpr AffineExpr::operator-() const {
   430    return *this * getAffineConstantExpr(-1, getContext());
   431  }
   432  
   433  // Delegate to operator+.
   434  AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); }
   435  AffineExpr AffineExpr::operator-(AffineExpr other) const {
   436    return *this + (-other);
   437  }
   438  
   439  static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
   440    auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
   441    auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
   442  
   443    if (!rhsConst || rhsConst.getValue() < 1)
   444      return nullptr;
   445  
   446    if (lhsConst)
   447      return getAffineConstantExpr(
   448          floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
   449  
   450    // Fold floordiv of a multiply with a constant that is a multiple of the
   451    // divisor. Eg: (i * 128) floordiv 64 = i * 2.
   452    if (rhsConst.getValue() == 1)
   453      return lhs;
   454  
   455    auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
   456    if (lBin && lBin.getKind() == AffineExprKind::Mul) {
   457      if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
   458        // rhsConst is known to be positive if a constant.
   459        if (lrhs.getValue() % rhsConst.getValue() == 0)
   460          return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
   461      }
   462    }
   463  
   464    return nullptr;
   465  }
   466  
   467  AffineExpr AffineExpr::floorDiv(uint64_t v) const {
   468    return floorDiv(getAffineConstantExpr(v, getContext()));
   469  }
   470  AffineExpr AffineExpr::floorDiv(AffineExpr other) const {
   471    if (auto simplified = simplifyFloorDiv(*this, other))
   472      return simplified;
   473  
   474    StorageUniquer &uniquer = getContext()->getAffineUniquer();
   475    return uniquer.get<AffineBinaryOpExprStorage>(
   476        /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this,
   477        other);
   478  }
   479  
   480  static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
   481    auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
   482    auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
   483  
   484    if (!rhsConst || rhsConst.getValue() < 1)
   485      return nullptr;
   486  
   487    if (lhsConst)
   488      return getAffineConstantExpr(
   489          ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
   490  
   491    // Fold ceildiv of a multiply with a constant that is a multiple of the
   492    // divisor. Eg: (i * 128) ceildiv 64 = i * 2.
   493    if (rhsConst.getValue() == 1)
   494      return lhs;
   495  
   496    auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
   497    if (lBin && lBin.getKind() == AffineExprKind::Mul) {
   498      if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
   499        // rhsConst is known to be positive if a constant.
   500        if (lrhs.getValue() % rhsConst.getValue() == 0)
   501          return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
   502      }
   503    }
   504  
   505    return nullptr;
   506  }
   507  
   508  AffineExpr AffineExpr::ceilDiv(uint64_t v) const {
   509    return ceilDiv(getAffineConstantExpr(v, getContext()));
   510  }
   511  AffineExpr AffineExpr::ceilDiv(AffineExpr other) const {
   512    if (auto simplified = simplifyCeilDiv(*this, other))
   513      return simplified;
   514  
   515    StorageUniquer &uniquer = getContext()->getAffineUniquer();
   516    return uniquer.get<AffineBinaryOpExprStorage>(
   517        /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this,
   518        other);
   519  }
   520  
   521  static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
   522    auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
   523    auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
   524  
   525    if (!rhsConst || rhsConst.getValue() < 1)
   526      return nullptr;
   527  
   528    if (lhsConst)
   529      return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
   530                                   lhs.getContext());
   531  
   532    // Fold modulo of an expression that is known to be a multiple of a constant
   533    // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
   534    // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
   535    if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
   536      return getAffineConstantExpr(0, lhs.getContext());
   537  
   538    return nullptr;
   539    // TODO(bondhugula): In general, this can be simplified more by using the GCD
   540    // test, or in general using quantifier elimination (add two new variables q
   541    // and r, and eliminate all variables from the linear system other than r. All
   542    // of this can be done through mlir/Analysis/'s FlatAffineConstraints.
   543  }
   544  
   545  AffineExpr AffineExpr::operator%(uint64_t v) const {
   546    return *this % getAffineConstantExpr(v, getContext());
   547  }
   548  AffineExpr AffineExpr::operator%(AffineExpr other) const {
   549    if (auto simplified = simplifyMod(*this, other))
   550      return simplified;
   551  
   552    StorageUniquer &uniquer = getContext()->getAffineUniquer();
   553    return uniquer.get<AffineBinaryOpExprStorage>(
   554        /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other);
   555  }
   556  
   557  AffineExpr AffineExpr::compose(AffineMap map) const {
   558    SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(),
   559                                               map.getResults().end());
   560    return replaceDimsAndSymbols(dimReplacements, {});
   561  }
   562  raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr &expr) {
   563    expr.print(os);
   564    return os;
   565  }
   566  
   567  /// Constructs an affine expression from a flat ArrayRef. If there are local
   568  /// identifiers (neither dimensional nor symbolic) that appear in the sum of
   569  /// products expression, 'localExprs' is expected to have the AffineExpr
   570  /// for it, and is substituted into. The ArrayRef 'eq' is expected to be in the
   571  /// format [dims, symbols, locals, constant term].
   572  AffineExpr mlir::toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims,
   573                                unsigned numSymbols,
   574                                ArrayRef<AffineExpr> localExprs,
   575                                MLIRContext *context) {
   576    // Assert expected numLocals = eq.size() - numDims - numSymbols - 1
   577    assert(eq.size() - numDims - numSymbols - 1 == localExprs.size() &&
   578           "unexpected number of local expressions");
   579  
   580    auto expr = getAffineConstantExpr(0, context);
   581    // Dimensions and symbols.
   582    for (unsigned j = 0; j < numDims + numSymbols; j++) {
   583      if (eq[j] == 0) {
   584        continue;
   585      }
   586      auto id = j < numDims ? getAffineDimExpr(j, context)
   587                            : getAffineSymbolExpr(j - numDims, context);
   588      expr = expr + id * eq[j];
   589    }
   590  
   591    // Local identifiers.
   592    for (unsigned j = numDims + numSymbols, e = eq.size() - 1; j < e; j++) {
   593      if (eq[j] == 0) {
   594        continue;
   595      }
   596      auto term = localExprs[j - numDims - numSymbols] * eq[j];
   597      expr = expr + term;
   598    }
   599  
   600    // Constant term.
   601    int64_t constTerm = eq[eq.size() - 1];
   602    if (constTerm != 0)
   603      expr = expr + constTerm;
   604    return expr;
   605  }
   606  
   607  SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
   608                                                       unsigned numSymbols)
   609      : numDims(numDims), numSymbols(numSymbols), numLocals(0) {
   610    operandExprStack.reserve(8);
   611  }
   612  
   613  void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
   614    assert(operandExprStack.size() >= 2);
   615    // This is a pure affine expr; the RHS will be a constant.
   616    assert(expr.getRHS().isa<AffineConstantExpr>());
   617    // Get the RHS constant.
   618    auto rhsConst = operandExprStack.back()[getConstantIndex()];
   619    operandExprStack.pop_back();
   620    // Update the LHS in place instead of pop and push.
   621    auto &lhs = operandExprStack.back();
   622    for (unsigned i = 0, e = lhs.size(); i < e; i++) {
   623      lhs[i] *= rhsConst;
   624    }
   625  }
   626  
   627  void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
   628    assert(operandExprStack.size() >= 2);
   629    const auto &rhs = operandExprStack.back();
   630    auto &lhs = operandExprStack[operandExprStack.size() - 2];
   631    assert(lhs.size() == rhs.size());
   632    // Update the LHS in place.
   633    for (unsigned i = 0, e = rhs.size(); i < e; i++) {
   634      lhs[i] += rhs[i];
   635    }
   636    // Pop off the RHS.
   637    operandExprStack.pop_back();
   638  }
   639  
   640  //
   641  // t = expr mod c   <=>  t = expr - c*q and c*q <= expr <= c*q + c - 1
   642  //
   643  // A mod expression "expr mod c" is thus flattened by introducing a new local
   644  // variable q (= expr floordiv c), such that expr mod c is replaced with
   645  // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst.
   646  void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
   647    assert(operandExprStack.size() >= 2);
   648    // This is a pure affine expr; the RHS will be a constant.
   649    assert(expr.getRHS().isa<AffineConstantExpr>());
   650    auto rhsConst = operandExprStack.back()[getConstantIndex()];
   651    operandExprStack.pop_back();
   652    auto &lhs = operandExprStack.back();
   653    // TODO(bondhugula): handle modulo by zero case when this issue is fixed
   654    // at the other places in the IR.
   655    assert(rhsConst > 0 && "RHS constant has to be positive");
   656  
   657    // Check if the LHS expression is a multiple of modulo factor.
   658    unsigned i, e;
   659    for (i = 0, e = lhs.size(); i < e; i++)
   660      if (lhs[i] % rhsConst != 0)
   661        break;
   662    // If yes, modulo expression here simplifies to zero.
   663    if (i == lhs.size()) {
   664      std::fill(lhs.begin(), lhs.end(), 0);
   665      return;
   666    }
   667  
   668    // Add a local variable for the quotient, i.e., expr % c is replaced by
   669    // (expr - q * c) where q = expr floordiv c. Do this while canceling out
   670    // the GCD of expr and c.
   671    SmallVector<int64_t, 8> floorDividend(lhs);
   672    uint64_t gcd = rhsConst;
   673    for (unsigned i = 0, e = lhs.size(); i < e; i++)
   674      gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
   675    // Simplify the numerator and the denominator.
   676    if (gcd != 1) {
   677      for (unsigned i = 0, e = floorDividend.size(); i < e; i++)
   678        floorDividend[i] = floorDividend[i] / static_cast<int64_t>(gcd);
   679    }
   680    int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd);
   681  
   682    // Construct the AffineExpr form of the floordiv to store in localExprs.
   683    MLIRContext *context = expr.getContext();
   684    auto dividendExpr =
   685        toAffineExpr(floorDividend, numDims, numSymbols, localExprs, context);
   686    auto divisorExpr = getAffineConstantExpr(floorDivisor, context);
   687    auto floorDivExpr = dividendExpr.floorDiv(divisorExpr);
   688    int loc;
   689    if ((loc = findLocalId(floorDivExpr)) == -1) {
   690      addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr);
   691      // Set result at top of stack to "lhs - rhsConst * q".
   692      lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
   693    } else {
   694      // Reuse the existing local id.
   695      lhs[getLocalVarStartIndex() + loc] = -rhsConst;
   696    }
   697  }
   698  
   699  void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
   700    visitDivExpr(expr, /*isCeil=*/true);
   701  }
   702  void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
   703    visitDivExpr(expr, /*isCeil=*/false);
   704  }
   705  
   706  void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
   707    operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
   708    auto &eq = operandExprStack.back();
   709    assert(expr.getPosition() < numDims && "Inconsistent number of dims");
   710    eq[getDimStartIndex() + expr.getPosition()] = 1;
   711  }
   712  
   713  void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
   714    operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
   715    auto &eq = operandExprStack.back();
   716    assert(expr.getPosition() < numSymbols && "inconsistent number of symbols");
   717    eq[getSymbolStartIndex() + expr.getPosition()] = 1;
   718  }
   719  
   720  void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
   721    operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
   722    auto &eq = operandExprStack.back();
   723    eq[getConstantIndex()] = expr.getValue();
   724  }
   725  
   726  // t = expr floordiv c   <=> t = q, c * q <= expr <= c * q + c - 1
   727  // A floordiv is thus flattened by introducing a new local variable q, and
   728  // replacing that expression with 'q' while adding the constraints
   729  // c * q <= expr <= c * q + c - 1 to localVarCst (done by
   730  // FlatAffineConstraints::addLocalFloorDiv).
   731  //
   732  // A ceildiv is similarly flattened:
   733  // t = expr ceildiv c   <=> t =  (expr + c - 1) floordiv c
   734  void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
   735                                               bool isCeil) {
   736    assert(operandExprStack.size() >= 2);
   737    assert(expr.getRHS().isa<AffineConstantExpr>());
   738  
   739    // This is a pure affine expr; the RHS is a positive constant.
   740    int64_t rhsConst = operandExprStack.back()[getConstantIndex()];
   741    // TODO(bondhugula): handle division by zero at the same time the issue is
   742    // fixed at other places.
   743    assert(rhsConst > 0 && "RHS constant has to be positive");
   744    operandExprStack.pop_back();
   745    auto &lhs = operandExprStack.back();
   746  
   747    // Simplify the floordiv, ceildiv if possible by canceling out the greatest
   748    // common divisors of the numerator and denominator.
   749    uint64_t gcd = std::abs(rhsConst);
   750    for (unsigned i = 0, e = lhs.size(); i < e; i++)
   751      gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
   752    // Simplify the numerator and the denominator.
   753    if (gcd != 1) {
   754      for (unsigned i = 0, e = lhs.size(); i < e; i++)
   755        lhs[i] = lhs[i] / static_cast<int64_t>(gcd);
   756    }
   757    int64_t divisor = rhsConst / static_cast<int64_t>(gcd);
   758    // If the divisor becomes 1, the updated LHS is the result. (The
   759    // divisor can't be negative since rhsConst is positive).
   760    if (divisor == 1)
   761      return;
   762  
   763    // If the divisor cannot be simplified to one, we will have to retain
   764    // the ceil/floor expr (simplified up until here). Add an existential
   765    // quantifier to express its result, i.e., expr1 div expr2 is replaced
   766    // by a new identifier, q.
   767    MLIRContext *context = expr.getContext();
   768    auto a = toAffineExpr(lhs, numDims, numSymbols, localExprs, context);
   769    auto b = getAffineConstantExpr(divisor, context);
   770  
   771    int loc;
   772    auto divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
   773    if ((loc = findLocalId(divExpr)) == -1) {
   774      if (!isCeil) {
   775        SmallVector<int64_t, 8> dividend(lhs);
   776        addLocalFloorDivId(dividend, divisor, divExpr);
   777      } else {
   778        // lhs ceildiv c <=>  (lhs + c - 1) floordiv c
   779        SmallVector<int64_t, 8> dividend(lhs);
   780        dividend.back() += divisor - 1;
   781        addLocalFloorDivId(dividend, divisor, divExpr);
   782      }
   783    }
   784    // Set the expression on stack to the local var introduced to capture the
   785    // result of the division (floor or ceil).
   786    std::fill(lhs.begin(), lhs.end(), 0);
   787    if (loc == -1)
   788      lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
   789    else
   790      lhs[getLocalVarStartIndex() + loc] = 1;
   791  }
   792  
   793  // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
   794  // The local identifier added is always a floordiv of a pure add/mul affine
   795  // function of other identifiers, coefficients of which are specified in
   796  // dividend and with respect to a positive constant divisor. localExpr is the
   797  // simplified tree expression (AffineExpr) corresponding to the quantifier.
   798  void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend,
   799                                                     int64_t divisor,
   800                                                     AffineExpr localExpr) {
   801    assert(divisor > 0 && "positive constant divisor expected");
   802    for (auto &subExpr : operandExprStack)
   803      subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
   804    localExprs.push_back(localExpr);
   805    numLocals++;
   806    // dividend and divisor are not used here; an override of this method uses it.
   807  }
   808  
   809  int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) {
   810    SmallVectorImpl<AffineExpr>::iterator it;
   811    if ((it = llvm::find(localExprs, localExpr)) == localExprs.end())
   812      return -1;
   813    return it - localExprs.begin();
   814  }
   815  
   816  /// Simplify the affine expression by flattening it and reconstructing it.
   817  AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
   818                                      unsigned numSymbols) {
   819    // TODO(bondhugula): only pure affine for now. The simplification here can
   820    // be extended to semi-affine maps in the future.
   821    if (!expr.isPureAffine())
   822      return expr;
   823  
   824    SimpleAffineExprFlattener flattener(numDims, numSymbols);
   825    flattener.walkPostOrder(expr);
   826    ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
   827    auto simplifiedExpr = toAffineExpr(flattenedExpr, numDims, numSymbols,
   828                                       flattener.localExprs, expr.getContext());
   829    flattener.operandExprStack.pop_back();
   830    assert(flattener.operandExprStack.empty());
   831  
   832    return simplifiedExpr;
   833  }
   834  
   835  // Flattens the expressions in map. Returns true on success or false
   836  // if 'expr' was unable to be flattened (i.e., semi-affine expressions not
   837  // handled yet).
   838  static bool getFlattenedAffineExprs(
   839      ArrayRef<AffineExpr> exprs, unsigned numDims, unsigned numSymbols,
   840      std::vector<llvm::SmallVector<int64_t, 8>> *flattenedExprs) {
   841    if (exprs.empty()) {
   842      return true;
   843    }
   844  
   845    SimpleAffineExprFlattener flattener(numDims, numSymbols);
   846    // Use the same flattener to simplify each expression successively. This way
   847    // local identifiers / expressions are shared.
   848    for (auto expr : exprs) {
   849      if (!expr.isPureAffine())
   850        return false;
   851  
   852      flattener.walkPostOrder(expr);
   853    }
   854  
   855    flattenedExprs->clear();
   856    assert(flattener.operandExprStack.size() == exprs.size());
   857    flattenedExprs->assign(flattener.operandExprStack.begin(),
   858                           flattener.operandExprStack.end());
   859  
   860    return true;
   861  }
   862  
   863  // Flattens 'expr' into 'flattenedExpr'. Returns true on success or false
   864  // if 'expr' was unable to be flattened (semi-affine expressions not handled
   865  // yet).
   866  bool mlir::getFlattenedAffineExpr(
   867      AffineExpr expr, unsigned numDims, unsigned numSymbols,
   868      llvm::SmallVectorImpl<int64_t> *flattenedExpr) {
   869    std::vector<SmallVector<int64_t, 8>> flattenedExprs;
   870    bool ret =
   871        ::getFlattenedAffineExprs({expr}, numDims, numSymbols, &flattenedExprs);
   872    *flattenedExpr = flattenedExprs[0];
   873    return ret;
   874  }
   875  
   876  /// Flattens the expressions in map. Returns true on success or false
   877  /// if 'expr' was unable to be flattened (i.e., semi-affine expressions not
   878  /// handled yet).
   879  bool mlir::getFlattenedAffineExprs(
   880      AffineMap map, std::vector<llvm::SmallVector<int64_t, 8>> *flattenedExprs) {
   881    if (map.getNumResults() == 0) {
   882      return true;
   883    }
   884    return ::getFlattenedAffineExprs(map.getResults(), map.getNumDims(),
   885                                     map.getNumSymbols(), flattenedExprs);
   886  }
   887  
   888  bool mlir::getFlattenedAffineExprs(
   889      IntegerSet set,
   890      std::vector<llvm::SmallVector<int64_t, 8>> *flattenedExprs) {
   891    if (set.getNumConstraints() == 0) {
   892      return true;
   893    }
   894    return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(),
   895                                     set.getNumSymbols(), flattenedExprs);
   896  }