github.com/johnnyeven/libtools@v0.0.0-20191126065708-61829c1adf46/third_party/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp (about) 1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Copyright 2019 The MLIR Authors. 4 // 5 // Licensed under the Apache License, Version 2.0 (the "License"); 6 // you may not use this file except in compliance with the License. 7 // You may obtain a copy of the License at 8 // 9 // http://www.apache.org/licenses/LICENSE-2.0 10 // 11 // Unless required by applicable law or agreed to in writing, software 12 // distributed under the License is distributed on an "AS IS" BASIS, 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 // See the License for the specific language governing permissions and 15 // limitations under the License. 16 // ============================================================================= 17 // 18 // This file implements the translation between an MLIR LLVM dialect module and 19 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 24 25 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 26 #include "mlir/IR/Attributes.h" 27 #include "mlir/IR/Module.h" 28 #include "mlir/Support/LLVM.h" 29 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 39 namespace mlir { 40 namespace LLVM { 41 42 // Convert an MLIR function type to LLVM IR. Arguments of the function must of 43 // MLIR LLVM IR dialect types. Use `loc` as a location when reporting errors. 44 // Return nullptr on errors. 45 static llvm::FunctionType *convertFunctionType(llvm::LLVMContext &llvmContext, 46 FunctionType type, Location loc, 47 bool isVarArgs) { 48 assert(type && "expected non-null type"); 49 if (type.getNumResults() > 1) 50 return emitError(loc, "LLVM functions can only have 0 or 1 result"), 51 nullptr; 52 53 SmallVector<llvm::Type *, 8> argTypes; 54 argTypes.reserve(type.getNumInputs()); 55 for (auto t : type.getInputs()) { 56 auto wrappedLLVMType = t.dyn_cast<LLVM::LLVMType>(); 57 if (!wrappedLLVMType) 58 return emitError(loc, "non-LLVM function argument type"), nullptr; 59 argTypes.push_back(wrappedLLVMType.getUnderlyingType()); 60 } 61 62 if (type.getNumResults() == 0) 63 return llvm::FunctionType::get(llvm::Type::getVoidTy(llvmContext), argTypes, 64 isVarArgs); 65 66 auto wrappedResultType = type.getResult(0).dyn_cast<LLVM::LLVMType>(); 67 if (!wrappedResultType) 68 return emitError(loc, "non-LLVM function result"), nullptr; 69 70 return llvm::FunctionType::get(wrappedResultType.getUnderlyingType(), 71 argTypes, isVarArgs); 72 } 73 74 // Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 75 // This currently supports integer, floating point, splat and dense element 76 // attributes and combinations thereof. In case of error, report it to `loc` 77 // and return nullptr. 78 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 79 Attribute attr, 80 Location loc) { 81 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 82 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 83 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 84 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 85 if (auto funcAttr = attr.dyn_cast<SymbolRefAttr>()) 86 return functionMapping.lookup(funcAttr.getValue()); 87 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 88 auto *vectorType = cast<llvm::VectorType>(llvmType); 89 auto *child = getLLVMConstant(vectorType->getElementType(), 90 splatAttr.getSplatValue(), loc); 91 return llvm::ConstantVector::getSplat(vectorType->getNumElements(), child); 92 } 93 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 94 auto *vectorType = cast<llvm::VectorType>(llvmType); 95 SmallVector<llvm::Constant *, 8> constants; 96 uint64_t numElements = vectorType->getNumElements(); 97 constants.reserve(numElements); 98 for (auto n : elementsAttr.getValues<Attribute>()) { 99 constants.push_back( 100 getLLVMConstant(vectorType->getElementType(), n, loc)); 101 if (!constants.back()) 102 return nullptr; 103 } 104 return llvm::ConstantVector::get(constants); 105 } 106 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 107 return llvm::ConstantDataArray::get( 108 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 109 stringAttr.getValue().size()}); 110 } 111 emitError(loc, "unsupported constant value"); 112 return nullptr; 113 } 114 115 // Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 116 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 117 switch (p) { 118 case LLVM::ICmpPredicate::eq: 119 return llvm::CmpInst::Predicate::ICMP_EQ; 120 case LLVM::ICmpPredicate::ne: 121 return llvm::CmpInst::Predicate::ICMP_NE; 122 case LLVM::ICmpPredicate::slt: 123 return llvm::CmpInst::Predicate::ICMP_SLT; 124 case LLVM::ICmpPredicate::sle: 125 return llvm::CmpInst::Predicate::ICMP_SLE; 126 case LLVM::ICmpPredicate::sgt: 127 return llvm::CmpInst::Predicate::ICMP_SGT; 128 case LLVM::ICmpPredicate::sge: 129 return llvm::CmpInst::Predicate::ICMP_SGE; 130 case LLVM::ICmpPredicate::ult: 131 return llvm::CmpInst::Predicate::ICMP_ULT; 132 case LLVM::ICmpPredicate::ule: 133 return llvm::CmpInst::Predicate::ICMP_ULE; 134 case LLVM::ICmpPredicate::ugt: 135 return llvm::CmpInst::Predicate::ICMP_UGT; 136 case LLVM::ICmpPredicate::uge: 137 return llvm::CmpInst::Predicate::ICMP_UGE; 138 } 139 llvm_unreachable("incorrect comparison predicate"); 140 } 141 142 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 143 switch (p) { 144 case LLVM::FCmpPredicate::_false: 145 return llvm::CmpInst::Predicate::FCMP_FALSE; 146 case LLVM::FCmpPredicate::oeq: 147 return llvm::CmpInst::Predicate::FCMP_OEQ; 148 case LLVM::FCmpPredicate::ogt: 149 return llvm::CmpInst::Predicate::FCMP_OGT; 150 case LLVM::FCmpPredicate::oge: 151 return llvm::CmpInst::Predicate::FCMP_OGE; 152 case LLVM::FCmpPredicate::olt: 153 return llvm::CmpInst::Predicate::FCMP_OLT; 154 case LLVM::FCmpPredicate::ole: 155 return llvm::CmpInst::Predicate::FCMP_OLE; 156 case LLVM::FCmpPredicate::one: 157 return llvm::CmpInst::Predicate::FCMP_ONE; 158 case LLVM::FCmpPredicate::ord: 159 return llvm::CmpInst::Predicate::FCMP_ORD; 160 case LLVM::FCmpPredicate::ueq: 161 return llvm::CmpInst::Predicate::FCMP_UEQ; 162 case LLVM::FCmpPredicate::ugt: 163 return llvm::CmpInst::Predicate::FCMP_UGT; 164 case LLVM::FCmpPredicate::uge: 165 return llvm::CmpInst::Predicate::FCMP_UGE; 166 case LLVM::FCmpPredicate::ult: 167 return llvm::CmpInst::Predicate::FCMP_ULT; 168 case LLVM::FCmpPredicate::ule: 169 return llvm::CmpInst::Predicate::FCMP_ULE; 170 case LLVM::FCmpPredicate::une: 171 return llvm::CmpInst::Predicate::FCMP_UNE; 172 case LLVM::FCmpPredicate::uno: 173 return llvm::CmpInst::Predicate::FCMP_UNO; 174 case LLVM::FCmpPredicate::_true: 175 return llvm::CmpInst::Predicate::FCMP_TRUE; 176 } 177 llvm_unreachable("incorrect comparison predicate"); 178 } 179 180 // A helper to look up remapped operands in the value remapping table. 181 template <typename Range> 182 SmallVector<llvm::Value *, 8> ModuleTranslation::lookupValues(Range &&values) { 183 SmallVector<llvm::Value *, 8> remapped; 184 remapped.reserve(llvm::size(values)); 185 for (Value *v : values) { 186 remapped.push_back(valueMapping.lookup(v)); 187 } 188 return remapped; 189 } 190 191 // Given a single MLIR operation, create the corresponding LLVM IR operation 192 // using the `builder`. LLVM IR Builder does not have a generic interface so 193 // this has to be a long chain of `if`s calling different functions with a 194 // different number of arguments. 195 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 196 llvm::IRBuilder<> &builder) { 197 auto extractPosition = [](ArrayAttr attr) { 198 SmallVector<unsigned, 4> position; 199 position.reserve(attr.size()); 200 for (Attribute v : attr) 201 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 202 return position; 203 }; 204 205 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 206 207 // Emit function calls. If the "callee" attribute is present, this is a 208 // direct function call and we also need to look up the remapped function 209 // itself. Otherwise, this is an indirect call and the callee is the first 210 // operand, look it up as a normal value. Return the llvm::Value representing 211 // the function result, which may be of llvm::VoidTy type. 212 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 213 auto operands = lookupValues(op.getOperands()); 214 ArrayRef<llvm::Value *> operandsRef(operands); 215 if (auto attr = op.getAttrOfType<SymbolRefAttr>("callee")) { 216 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 217 operandsRef); 218 } else { 219 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 220 } 221 }; 222 223 // Emit calls. If the called function has a result, remap the corresponding 224 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 225 if (isa<LLVM::CallOp>(opInst)) { 226 llvm::Value *result = convertCall(opInst); 227 if (opInst.getNumResults() != 0) { 228 valueMapping[opInst.getResult(0)] = result; 229 return success(); 230 } 231 // Check that LLVM call returns void for 0-result functions. 232 return success(result->getType()->isVoidTy()); 233 } 234 235 // Emit branches. We need to look up the remapped blocks and ignore the block 236 // arguments that were transformed into PHI nodes. 237 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 238 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 239 return success(); 240 } 241 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 242 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 243 blockMapping[condbrOp.getSuccessor(0)], 244 blockMapping[condbrOp.getSuccessor(1)]); 245 return success(); 246 } 247 248 // Emit addressof. We need to look up the global value referenced by the 249 // operation and store it in the MLIR-to-LLVM value mapping. This does not 250 // emit any LLVM instruction. 251 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 252 LLVM::GlobalOp global = addressOfOp.getGlobal(); 253 // The verifier should not have allowed this. 254 assert(global && "referencing an undefined global"); 255 256 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 257 return success(); 258 } 259 260 return opInst.emitError("unsupported or non-LLVM operation: ") 261 << opInst.getName(); 262 } 263 264 // Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 265 // to define values corresponding to the MLIR block arguments. These nodes 266 // are not connected to the source basic blocks, which may not exist yet. 267 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 268 llvm::IRBuilder<> builder(blockMapping[&bb]); 269 270 // Before traversing operations, make block arguments available through 271 // value remapping and PHI nodes, but do not add incoming edges for the PHI 272 // nodes just yet: those values may be defined by this or following blocks. 273 // This step is omitted if "ignoreArguments" is set. The arguments of the 274 // first block have been already made available through the remapping of 275 // LLVM function arguments. 276 if (!ignoreArguments) { 277 auto predecessors = bb.getPredecessors(); 278 unsigned numPredecessors = 279 std::distance(predecessors.begin(), predecessors.end()); 280 for (auto *arg : bb.getArguments()) { 281 auto wrappedType = arg->getType().dyn_cast<LLVM::LLVMType>(); 282 if (!wrappedType) 283 return emitError(bb.front().getLoc(), 284 "block argument does not have an LLVM type"); 285 llvm::Type *type = wrappedType.getUnderlyingType(); 286 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 287 valueMapping[arg] = phi; 288 } 289 } 290 291 // Traverse operations. 292 for (auto &op : bb) { 293 if (failed(convertOperation(op, builder))) 294 return failure(); 295 } 296 297 return success(); 298 } 299 300 // Create named global variables that correspond to llvm.global definitions. 301 void ModuleTranslation::convertGlobals() { 302 for (auto op : mlirModule.getOps<LLVM::GlobalOp>()) { 303 llvm::Constant *cst; 304 llvm::Type *type; 305 // String attributes are treated separately because they cannot appear as 306 // in-function constants and are thus not supported by getLLVMConstant. 307 if (auto strAttr = op.value().dyn_cast<StringAttr>()) { 308 cst = llvm::ConstantDataArray::getString( 309 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 310 type = cst->getType(); 311 } else { 312 type = op.getType().getUnderlyingType(); 313 cst = getLLVMConstant(type, op.value(), op.getLoc()); 314 } 315 316 auto *var = new llvm::GlobalVariable(*llvmModule, type, op.constant(), 317 llvm::GlobalValue::InternalLinkage, 318 cst, op.sym_name()); 319 globalsMapping.try_emplace(op, var); 320 } 321 } 322 323 // Get the SSA value passed to the current block from the terminator operation 324 // of its predecessor. 325 static Value *getPHISourceValue(Block *current, Block *pred, 326 unsigned numArguments, unsigned index) { 327 auto &terminator = *pred->getTerminator(); 328 if (isa<LLVM::BrOp>(terminator)) { 329 return terminator.getOperand(index); 330 } 331 332 // For conditional branches, we need to check if the current block is reached 333 // through the "true" or the "false" branch and take the relevant operands. 334 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 335 assert(condBranchOp && 336 "only branch operations can be terminators of a block that " 337 "has successors"); 338 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 339 "successors with arguments in LLVM conditional branches must be " 340 "different blocks"); 341 342 return condBranchOp.getSuccessor(0) == current 343 ? terminator.getSuccessorOperand(0, index) 344 : terminator.getSuccessorOperand(1, index); 345 } 346 347 void ModuleTranslation::connectPHINodes(FuncOp func) { 348 // Skip the first block, it cannot be branched to and its arguments correspond 349 // to the arguments of the LLVM function. 350 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 351 Block *bb = &*it; 352 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 353 auto phis = llvmBB->phis(); 354 auto numArguments = bb->getNumArguments(); 355 assert(numArguments == std::distance(phis.begin(), phis.end())); 356 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 357 auto &phiNode = numberedPhiNode.value(); 358 unsigned index = numberedPhiNode.index(); 359 for (auto *pred : bb->getPredecessors()) { 360 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 361 bb, pred, numArguments, index)), 362 blockMapping.lookup(pred)); 363 } 364 } 365 } 366 } 367 368 // TODO(mlir-team): implement an iterative version 369 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 370 blocks.insert(b); 371 for (Block *bb : b->getSuccessors()) { 372 if (blocks.count(bb) == 0) 373 topologicalSortImpl(blocks, bb); 374 } 375 } 376 377 // Sort function blocks topologically. 378 static llvm::SetVector<Block *> topologicalSort(FuncOp f) { 379 // For each blocks that has not been visited yet (i.e. that has no 380 // predecessors), add it to the list and traverse its successors in DFS 381 // preorder. 382 llvm::SetVector<Block *> blocks; 383 for (Block &b : f.getBlocks()) { 384 if (blocks.count(&b) == 0) 385 topologicalSortImpl(blocks, &b); 386 } 387 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 388 389 return blocks; 390 } 391 392 LogicalResult ModuleTranslation::convertOneFunction(FuncOp func) { 393 // Clear the block and value mappings, they are only relevant within one 394 // function. 395 blockMapping.clear(); 396 valueMapping.clear(); 397 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 398 // Add function arguments to the value remapping table. 399 // If there was noalias info then we decorate each argument accordingly. 400 unsigned int argIdx = 0; 401 for (const auto &kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 402 llvm::Argument &llvmArg = std::get<1>(kvp); 403 BlockArgument *mlirArg = std::get<0>(kvp); 404 405 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 406 // NB: Attribute already verified to be boolean, so check if we can indeed 407 // attach the attribute to this argument, based on its type. 408 auto argTy = mlirArg->getType().dyn_cast<LLVM::LLVMType>(); 409 if (!argTy.getUnderlyingType()->isPointerTy()) 410 return func.emitError( 411 "llvm.noalias attribute attached to LLVM non-pointer argument"); 412 if (attr.getValue()) 413 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 414 } 415 valueMapping[mlirArg] = &llvmArg; 416 argIdx++; 417 } 418 419 // First, create all blocks so we can jump to them. 420 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 421 for (auto &bb : func) { 422 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 423 llvmBB->insertInto(llvmFunc); 424 blockMapping[&bb] = llvmBB; 425 } 426 427 // Then, convert blocks one by one in topological order to ensure defs are 428 // converted before uses. 429 auto blocks = topologicalSort(func); 430 for (auto indexedBB : llvm::enumerate(blocks)) { 431 auto *bb = indexedBB.value(); 432 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 433 return failure(); 434 } 435 436 // Finally, after all blocks have been traversed and values mapped, connect 437 // the PHI nodes to the results of preceding blocks. 438 connectPHINodes(func); 439 return success(); 440 } 441 442 LogicalResult ModuleTranslation::convertFunctions() { 443 // Declare all functions first because there may be function calls that form a 444 // call graph with cycles. 445 for (FuncOp function : mlirModule.getOps<FuncOp>()) { 446 mlir::BoolAttr isVarArgsAttr = 447 function.getAttrOfType<BoolAttr>("std.varargs"); 448 bool isVarArgs = isVarArgsAttr && isVarArgsAttr.getValue(); 449 llvm::FunctionType *functionType = 450 convertFunctionType(llvmModule->getContext(), function.getType(), 451 function.getLoc(), isVarArgs); 452 if (!functionType) 453 return failure(); 454 llvm::FunctionCallee llvmFuncCst = 455 llvmModule->getOrInsertFunction(function.getName(), functionType); 456 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 457 functionMapping[function.getName()] = 458 cast<llvm::Function>(llvmFuncCst.getCallee()); 459 } 460 461 // Convert functions. 462 for (FuncOp function : mlirModule.getOps<FuncOp>()) { 463 // Ignore external functions. 464 if (function.isExternal()) 465 continue; 466 467 if (failed(convertOneFunction(function))) 468 return failure(); 469 } 470 471 return success(); 472 } 473 474 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(ModuleOp m) { 475 auto *dialect = m.getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 476 assert(dialect && "LLVM dialect must be registered"); 477 478 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 479 if (!llvmModule) 480 return nullptr; 481 482 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 483 llvm::IRBuilder<> builder(llvmContext); 484 485 // Inject declarations for `malloc` and `free` functions that can be used in 486 // memref allocation/deallocation coming from standard ops lowering. 487 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 488 builder.getInt64Ty()); 489 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 490 builder.getInt8PtrTy()); 491 492 return llvmModule; 493 } 494 495 } // namespace LLVM 496 } // namespace mlir