github.com/johnnyeven/libtools@v0.0.0-20191126065708-61829c1adf46/third_party/mlir/lib/Transforms/CSE.cpp (about) 1 //===- CSE.cpp - Common Sub-expression Elimination ------------------------===// 2 // 3 // Copyright 2019 The MLIR Authors. 4 // 5 // Licensed under the Apache License, Version 2.0 (the "License"); 6 // you may not use this file except in compliance with the License. 7 // You may obtain a copy of the License at 8 // 9 // http://www.apache.org/licenses/LICENSE-2.0 10 // 11 // Unless required by applicable law or agreed to in writing, software 12 // distributed under the License is distributed on an "AS IS" BASIS, 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 // See the License for the specific language governing permissions and 15 // limitations under the License. 16 // ============================================================================= 17 // 18 // This transformation pass performs a simple common sub-expression elimination 19 // algorithm on operations within a function. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "mlir/Analysis/Dominance.h" 24 #include "mlir/IR/Attributes.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/Function.h" 27 #include "mlir/Pass/Pass.h" 28 #include "mlir/Support/Functional.h" 29 #include "mlir/Transforms/Passes.h" 30 #include "mlir/Transforms/Utils.h" 31 #include "llvm/ADT/DenseMapInfo.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/ScopedHashTable.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/RecyclingAllocator.h" 36 #include <deque> 37 using namespace mlir; 38 39 namespace { 40 // TODO(riverriddle) Handle commutative operations. 41 struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> { 42 static unsigned getHashValue(const Operation *opC) { 43 auto *op = const_cast<Operation *>(opC); 44 // Hash the operations based upon their: 45 // - Operation Name 46 // - Attributes 47 // - Result Types 48 // - Operands 49 return hash_combine( 50 op->getName(), op->getAttrs(), 51 hash_combine_range(op->result_type_begin(), op->result_type_end()), 52 hash_combine_range(op->operand_begin(), op->operand_end())); 53 } 54 static bool isEqual(const Operation *lhsC, const Operation *rhsC) { 55 auto *lhs = const_cast<Operation *>(lhsC); 56 auto *rhs = const_cast<Operation *>(rhsC); 57 if (lhs == rhs) 58 return true; 59 if (lhs == getTombstoneKey() || lhs == getEmptyKey() || 60 rhs == getTombstoneKey() || rhs == getEmptyKey()) 61 return false; 62 63 // Compare the operation name. 64 if (lhs->getName() != rhs->getName()) 65 return false; 66 // Check operand and result type counts. 67 if (lhs->getNumOperands() != rhs->getNumOperands() || 68 lhs->getNumResults() != rhs->getNumResults()) 69 return false; 70 // Compare attributes. 71 if (lhs->getAttrs() != rhs->getAttrs()) 72 return false; 73 // Compare operands. 74 if (!std::equal(lhs->operand_begin(), lhs->operand_end(), 75 rhs->operand_begin())) 76 return false; 77 // Compare result types. 78 return std::equal(lhs->result_type_begin(), lhs->result_type_end(), 79 rhs->result_type_begin()); 80 } 81 }; 82 } // end anonymous namespace 83 84 namespace { 85 /// Simple common sub-expression elimination. 86 struct CSE : public FunctionPass<CSE> { 87 CSE() = default; 88 CSE(const CSE &) {} 89 90 /// Shared implementation of operation elimination and scoped map definitions. 91 using AllocatorTy = llvm::RecyclingAllocator< 92 llvm::BumpPtrAllocator, 93 llvm::ScopedHashTableVal<Operation *, Operation *>>; 94 using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *, 95 SimpleOperationInfo, AllocatorTy>; 96 97 /// Represents a single entry in the depth first traversal of a CFG. 98 struct CFGStackNode { 99 CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node) 100 : scope(knownValues), node(node), childIterator(node->begin()), 101 processed(false) {} 102 103 /// Scope for the known values. 104 ScopedMapTy::ScopeTy scope; 105 106 DominanceInfoNode *node; 107 DominanceInfoNode::iterator childIterator; 108 109 /// If this node has been fully processed yet or not. 110 bool processed; 111 }; 112 113 /// Attempt to eliminate a redundant operation. Returns success if the 114 /// operation was marked for removal, failure otherwise. 115 LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op); 116 117 void simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo, 118 Block *bb); 119 void simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo, 120 Region ®ion); 121 122 void runOnFunction() override; 123 124 private: 125 /// Operations marked as dead and to be erased. 126 std::vector<Operation *> opsToErase; 127 }; 128 } // end anonymous namespace 129 130 /// Attempt to eliminate a redundant operation. 131 LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op) { 132 // Don't simplify operations with nested blocks. We don't currently model 133 // equality comparisons correctly among other things. It is also unclear 134 // whether we would want to CSE such operations. 135 if (op->getNumRegions() != 0) 136 return failure(); 137 138 // TODO(riverriddle) We currently only eliminate non side-effecting 139 // operations. 140 if (!op->hasNoSideEffect()) 141 return failure(); 142 143 // If the operation is already trivially dead just add it to the erase list. 144 if (op->use_empty()) { 145 opsToErase.push_back(op); 146 return success(); 147 } 148 149 // Look for an existing definition for the operation. 150 if (auto *existing = knownValues.lookup(op)) { 151 // If we find one then replace all uses of the current operation with the 152 // existing one and mark it for deletion. 153 op->replaceAllUsesWith(existing); 154 opsToErase.push_back(op); 155 156 // If the existing operation has an unknown location and the current 157 // operation doesn't, then set the existing op's location to that of the 158 // current op. 159 if (existing->getLoc().isa<UnknownLoc>() && 160 !op->getLoc().isa<UnknownLoc>()) { 161 existing->setLoc(op->getLoc()); 162 } 163 return success(); 164 } 165 166 // Otherwise, we add this operation to the known values map. 167 knownValues.insert(op, op); 168 return failure(); 169 } 170 171 void CSE::simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo, 172 Block *bb) { 173 for (auto &inst : *bb) { 174 // If the operation is simplified, we don't process any held regions. 175 if (succeeded(simplifyOperation(knownValues, &inst))) 176 continue; 177 178 // If this operation is isolated above, we can't process nested regions with 179 // the given 'knownValues' map. This would cause the insertion of implicit 180 // captures in explicit capture only regions. 181 if (!inst.isRegistered() || inst.isKnownIsolatedFromAbove()) { 182 ScopedMapTy nestedKnownValues; 183 for (auto ®ion : inst.getRegions()) 184 simplifyRegion(nestedKnownValues, domInfo, region); 185 continue; 186 } 187 188 // Otherwise, process nested regions normally. 189 for (auto ®ion : inst.getRegions()) 190 simplifyRegion(knownValues, domInfo, region); 191 } 192 } 193 194 void CSE::simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo, 195 Region ®ion) { 196 // If the region is empty there is nothing to do. 197 if (region.empty()) 198 return; 199 200 // If the region only contains one block, then simplify it directly. 201 if (std::next(region.begin()) == region.end()) { 202 ScopedMapTy::ScopeTy scope(knownValues); 203 simplifyBlock(knownValues, domInfo, ®ion.front()); 204 return; 205 } 206 207 // Note, deque is being used here because there was significant performance 208 // gains over vector when the container becomes very large due to the 209 // specific access patterns. If/when these performance issues are no 210 // longer a problem we can change this to vector. For more information see 211 // the llvm mailing list discussion on this: 212 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 213 std::deque<std::unique_ptr<CFGStackNode>> stack; 214 215 // Process the nodes of the dom tree for this region. 216 stack.emplace_back(std::make_unique<CFGStackNode>( 217 knownValues, domInfo.getRootNode(®ion))); 218 219 while (!stack.empty()) { 220 auto ¤tNode = stack.back(); 221 222 // Check to see if we need to process this node. 223 if (!currentNode->processed) { 224 currentNode->processed = true; 225 simplifyBlock(knownValues, domInfo, currentNode->node->getBlock()); 226 } 227 228 // Otherwise, check to see if we need to process a child node. 229 if (currentNode->childIterator != currentNode->node->end()) { 230 auto *childNode = *(currentNode->childIterator++); 231 stack.emplace_back( 232 std::make_unique<CFGStackNode>(knownValues, childNode)); 233 } else { 234 // Finally, if the node and all of its children have been processed 235 // then we delete the node. 236 stack.pop_back(); 237 } 238 } 239 } 240 241 void CSE::runOnFunction() { 242 /// A scoped hash table of defining operations within a function. 243 ScopedMapTy knownValues; 244 simplifyRegion(knownValues, getAnalysis<DominanceInfo>(), 245 getFunction().getBody()); 246 247 // If no operations were erased, then we mark all analyses as preserved. 248 if (opsToErase.empty()) 249 return markAllAnalysesPreserved(); 250 251 /// Erase any operations that were marked as dead during simplification. 252 for (auto *op : opsToErase) 253 op->erase(); 254 opsToErase.clear(); 255 256 // We currently don't remove region operations, so mark dominance as 257 // preserved. 258 markAnalysesPreserved<DominanceInfo, PostDominanceInfo>(); 259 } 260 261 std::unique_ptr<FunctionPassBase> mlir::createCSEPass() { 262 return std::make_unique<CSE>(); 263 } 264 265 static PassRegistration<CSE> 266 pass("cse", "Eliminate common sub-expressions in functions");