github.com/johnnyeven/libtools@v0.0.0-20191126065708-61829c1adf46/third_party/mlir/lib/Transforms/LowerVectorTransfers.cpp (about) 1 //===- LowerVectorTransfers.cpp - LowerVectorTransfers Pass Impl ----------===// 2 // 3 // Copyright 2019 The MLIR Authors. 4 // 5 // Licensed under the Apache License, Version 2.0 (the "License"); 6 // you may not use this file except in compliance with the License. 7 // You may obtain a copy of the License at 8 // 9 // http://www.apache.org/licenses/LICENSE-2.0 10 // 11 // Unless required by applicable law or agreed to in writing, software 12 // distributed under the License is distributed on an "AS IS" BASIS, 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 // See the License for the specific language governing permissions and 15 // limitations under the License. 16 // ============================================================================= 17 // 18 // This file implements target-dependent lowering of vector transfer operations. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include <type_traits> 23 24 #include "mlir/Analysis/AffineAnalysis.h" 25 #include "mlir/Analysis/NestedMatcher.h" 26 #include "mlir/Analysis/Utils.h" 27 #include "mlir/Analysis/VectorAnalysis.h" 28 #include "mlir/Dialect/StandardOps/Ops.h" 29 #include "mlir/Dialect/VectorOps/VectorOps.h" 30 #include "mlir/EDSC/Builders.h" 31 #include "mlir/EDSC/Helpers.h" 32 #include "mlir/IR/AffineExpr.h" 33 #include "mlir/IR/AffineMap.h" 34 #include "mlir/IR/Attributes.h" 35 #include "mlir/IR/Builders.h" 36 #include "mlir/IR/Location.h" 37 #include "mlir/IR/Matchers.h" 38 #include "mlir/IR/OperationSupport.h" 39 #include "mlir/IR/PatternMatch.h" 40 #include "mlir/IR/Types.h" 41 #include "mlir/Pass/Pass.h" 42 #include "mlir/Support/Functional.h" 43 #include "mlir/Transforms/Passes.h" 44 45 /// Implements lowering of VectorTransferReadOp and VectorTransferWriteOp to a 46 /// proper abstraction for the hardware. 47 /// 48 /// For now, we only emit a simple loop nest that performs clipped pointwise 49 /// copies from a remote to a locally allocated memory. 50 /// 51 /// Consider the case: 52 /// 53 /// ```mlir {.mlir} 54 /// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into 55 /// // vector<32x256xf32> and pad with %f0 to handle the boundary case: 56 /// %f0 = constant 0.0f : f32 57 /// affine.for %i0 = 0 to %0 { 58 /// affine.for %i1 = 0 to %1 step 256 { 59 /// affine.for %i2 = 0 to %2 step 32 { 60 /// %v = vector.transfer_read %A[%i0, %i1, %i2], (%f0) 61 /// {permutation_map: (d0, d1, d2) -> (d2, d1)} : 62 /// memref<?x?x?xf32>, vector<32x256xf32> 63 /// }}} 64 /// ``` 65 /// 66 /// The rewriters construct loop and indices that access MemRef A in a pattern 67 /// resembling the following (while guaranteeing an always full-tile 68 /// abstraction): 69 /// 70 /// ```mlir {.mlir} 71 /// affine.for %d2 = 0 to 256 { 72 /// affine.for %d1 = 0 to 32 { 73 /// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32 74 /// %tmp[%d2, %d1] = %s 75 /// } 76 /// } 77 /// ``` 78 /// 79 /// In the current state, only a clipping transfer is implemented by `clip`, 80 /// which creates individual indexing expressions of the form: 81 /// 82 /// ```mlir-dsc 83 /// SELECT(i + ii < zero, zero, SELECT(i + ii < N, i + ii, N - one)) 84 /// ``` 85 86 using namespace mlir; 87 using vector::VectorTransferReadOp; 88 using vector::VectorTransferWriteOp; 89 90 #define DEBUG_TYPE "affine-lower-vector-transfers" 91 92 namespace { 93 94 /// Lowers VectorTransferOp into a combination of: 95 /// 1. local memory allocation; 96 /// 2. perfect loop nest over: 97 /// a. scalar load/stores from local buffers (viewed as a scalar memref); 98 /// a. scalar store/load to original memref (with clipping). 99 /// 3. vector_load/store 100 /// 4. local memory deallocation. 101 /// Minor variations occur depending on whether a VectorTransferReadOp or 102 /// a VectorTransferWriteOp is rewritten. 103 template <typename VectorTransferOpTy> 104 struct VectorTransferRewriter : public RewritePattern { 105 explicit VectorTransferRewriter(MLIRContext *context) 106 : RewritePattern(VectorTransferOpTy::getOperationName(), 1, context) {} 107 108 /// Used for staging the transfer in a local scalar buffer. 109 MemRefType tmpMemRefType(VectorTransferOpTy transfer) const { 110 auto vectorType = transfer.getVectorType(); 111 return MemRefType::get(vectorType.getShape(), vectorType.getElementType(), 112 {}, 0); 113 } 114 115 /// View of tmpMemRefType as one vector, used in vector load/store to tmp 116 /// buffer. 117 MemRefType vectorMemRefType(VectorTransferOpTy transfer) const { 118 return MemRefType::get({1}, transfer.getVectorType(), {}, 0); 119 } 120 121 /// Performs the rewrite. 122 PatternMatchResult matchAndRewrite(Operation *op, 123 PatternRewriter &rewriter) const override; 124 }; 125 126 /// Analyzes the `transfer` to find an access dimension along the fastest remote 127 /// MemRef dimension. If such a dimension with coalescing properties is found, 128 /// `pivs` and `vectorView` are swapped so that the invocation of 129 /// LoopNestBuilder captures it in the innermost loop. 130 template <typename VectorTransferOpTy> 131 void coalesceCopy(VectorTransferOpTy transfer, 132 SmallVectorImpl<edsc::ValueHandle *> *pivs, 133 edsc::VectorView *vectorView) { 134 // rank of the remote memory access, coalescing behavior occurs on the 135 // innermost memory dimension. 136 auto remoteRank = transfer.getMemRefType().getRank(); 137 // Iterate over the results expressions of the permutation map to determine 138 // the loop order for creating pointwise copies between remote and local 139 // memories. 140 int coalescedIdx = -1; 141 auto exprs = transfer.getPermutationMap().getResults(); 142 for (auto en : llvm::enumerate(exprs)) { 143 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 144 if (!dim) { 145 continue; 146 } 147 auto memRefDim = dim.getPosition(); 148 if (memRefDim == remoteRank - 1) { 149 // memRefDim has coalescing properties, it should be swapped in the last 150 // position. 151 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 152 coalescedIdx = en.index(); 153 } 154 } 155 if (coalescedIdx >= 0) { 156 std::swap(pivs->back(), (*pivs)[coalescedIdx]); 157 vectorView->swapRanges(pivs->size() - 1, coalescedIdx); 158 } 159 } 160 161 /// Emits remote memory accesses that are clipped to the boundaries of the 162 /// MemRef. 163 template <typename VectorTransferOpTy> 164 llvm::SmallVector<edsc::ValueHandle, 8> clip(VectorTransferOpTy transfer, 165 edsc::MemRefView &view, 166 ArrayRef<edsc::IndexHandle> ivs) { 167 using namespace mlir::edsc; 168 using namespace edsc::op; 169 using edsc::intrinsics::select; 170 171 IndexHandle zero(index_t(0)), one(index_t(1)); 172 llvm::SmallVector<edsc::ValueHandle, 8> memRefAccess(transfer.getIndices()); 173 llvm::SmallVector<edsc::ValueHandle, 8> clippedScalarAccessExprs( 174 memRefAccess.size(), edsc::IndexHandle()); 175 176 // Indices accessing to remote memory are clipped and their expressions are 177 // returned in clippedScalarAccessExprs. 178 for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size(); 179 ++memRefDim) { 180 // Linear search on a small number of entries. 181 int loopIndex = -1; 182 auto exprs = transfer.getPermutationMap().getResults(); 183 for (auto en : llvm::enumerate(exprs)) { 184 auto expr = en.value(); 185 auto dim = expr.template dyn_cast<AffineDimExpr>(); 186 // Sanity check. 187 assert( 188 (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) && 189 "Expected dim or 0 in permutationMap"); 190 if (dim && memRefDim == dim.getPosition()) { 191 loopIndex = en.index(); 192 break; 193 } 194 } 195 196 // We cannot distinguish atm between unrolled dimensions that implement 197 // the "always full" tile abstraction and need clipping from the other 198 // ones. So we conservatively clip everything. 199 auto N = view.ub(memRefDim); 200 auto i = memRefAccess[memRefDim]; 201 if (loopIndex < 0) { 202 auto N_minus_1 = N - one; 203 auto select_1 = select(i < N, i, N_minus_1); 204 clippedScalarAccessExprs[memRefDim] = select(i < zero, zero, select_1); 205 } else { 206 auto ii = ivs[loopIndex]; 207 auto i_plus_ii = i + ii; 208 auto N_minus_1 = N - one; 209 auto select_1 = select(i_plus_ii < N, i_plus_ii, N_minus_1); 210 clippedScalarAccessExprs[memRefDim] = 211 select(i_plus_ii < zero, zero, select_1); 212 } 213 } 214 215 return clippedScalarAccessExprs; 216 } 217 218 /// Lowers VectorTransferReadOp into a combination of: 219 /// 1. local memory allocation; 220 /// 2. perfect loop nest over: 221 /// a. scalar load from local buffers (viewed as a scalar memref); 222 /// a. scalar store to original memref (with clipping). 223 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 224 /// 4. local memory deallocation. 225 /// 226 /// Lowers the data transfer part of a VectorTransferReadOp while ensuring no 227 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 228 /// clipping. This means that a given value in memory can be read multiple 229 /// times and concurrently. 230 /// 231 /// Important notes about clipping and "full-tiles only" abstraction: 232 /// ================================================================= 233 /// When using clipping for dealing with boundary conditions, the same edge 234 /// value will appear multiple times (a.k.a edge padding). This is fine if the 235 /// subsequent vector operations are all data-parallel but **is generally 236 /// incorrect** in the presence of reductions or extract operations. 237 /// 238 /// More generally, clipping is a scalar abstraction that is expected to work 239 /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs. 240 /// To deal with real vector_load and DMAs, a "padded allocation + view" 241 /// abstraction with the ability to read out-of-memref-bounds (but still within 242 /// the allocated region) is necessary. 243 /// 244 /// Whether using scalar loops or vector_load/DMAs to perform the transfer, 245 /// junk values will be materialized in the vectors and generally need to be 246 /// filtered out and replaced by the "neutral element". This neutral element is 247 /// op-dependent so, in the future, we expect to create a vector filter and 248 /// apply it to a splatted constant vector with the proper neutral element at 249 /// each ssa-use. This filtering is not necessary for pure data-parallel 250 /// operations. 251 /// 252 /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which 253 /// also have concurrency implications. Note that by using clipped scalar stores 254 /// in the presence of data-parallel only operations, we generate code that 255 /// writes the same value multiple time on the edge locations. 256 /// 257 /// TODO(ntv): implement alternatives to clipping. 258 /// TODO(ntv): support non-data-parallel operations. 259 260 /// Performs the rewrite. 261 template <> 262 PatternMatchResult 263 VectorTransferRewriter<VectorTransferReadOp>::matchAndRewrite( 264 Operation *op, PatternRewriter &rewriter) const { 265 using namespace mlir::edsc; 266 using namespace mlir::edsc::op; 267 using namespace mlir::edsc::intrinsics; 268 using IndexedValue = 269 TemplatedIndexedValue<intrinsics::std_load, intrinsics::std_store>; 270 271 VectorTransferReadOp transfer = cast<VectorTransferReadOp>(op); 272 273 // 1. Setup all the captures. 274 ScopedContext scope(rewriter, transfer.getLoc()); 275 IndexedValue remote(transfer.getMemRef()); 276 MemRefView view(transfer.getMemRef()); 277 VectorView vectorView(transfer.getVector()); 278 SmallVector<IndexHandle, 8> ivs = makeIndexHandles(vectorView.rank()); 279 SmallVector<ValueHandle *, 8> pivs = 280 makeIndexHandlePointers(MutableArrayRef<IndexHandle>(ivs)); 281 coalesceCopy(transfer, &pivs, &vectorView); 282 283 auto lbs = vectorView.getLbs(); 284 auto ubs = vectorView.getUbs(); 285 auto steps = vectorView.getSteps(); 286 287 // 2. Emit alloc-copy-load-dealloc. 288 ValueHandle tmp = alloc(tmpMemRefType(transfer)); 289 IndexedValue local(tmp); 290 ValueHandle vec = vector_type_cast(tmp, vectorMemRefType(transfer)); 291 LoopNestBuilder(pivs, lbs, ubs, steps)([&] { 292 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 293 local(ivs) = remote(clip(transfer, view, ivs)); 294 }); 295 ValueHandle vectorValue = std_load(vec, {constant_index(0)}); 296 (dealloc(tmp)); // vexing parse 297 298 // 3. Propagate. 299 rewriter.replaceOp(op, vectorValue.getValue()); 300 return matchSuccess(); 301 } 302 303 /// Lowers VectorTransferWriteOp into a combination of: 304 /// 1. local memory allocation; 305 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 306 /// 3. perfect loop nest over: 307 /// a. scalar load from local buffers (viewed as a scalar memref); 308 /// a. scalar store to original memref (with clipping). 309 /// 4. local memory deallocation. 310 /// 311 /// More specifically, lowers the data transfer part while ensuring no 312 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 313 /// clipping. This means that a given value in memory can be written to multiple 314 /// times and concurrently. 315 /// 316 /// See `Important notes about clipping and full-tiles only abstraction` in the 317 /// description of `readClipped` above. 318 /// 319 /// TODO(ntv): implement alternatives to clipping. 320 /// TODO(ntv): support non-data-parallel operations. 321 template <> 322 PatternMatchResult 323 VectorTransferRewriter<VectorTransferWriteOp>::matchAndRewrite( 324 Operation *op, PatternRewriter &rewriter) const { 325 using namespace mlir::edsc; 326 using namespace mlir::edsc::op; 327 using namespace mlir::edsc::intrinsics; 328 using IndexedValue = 329 TemplatedIndexedValue<intrinsics::std_load, intrinsics::std_store>; 330 331 VectorTransferWriteOp transfer = cast<VectorTransferWriteOp>(op); 332 333 // 1. Setup all the captures. 334 ScopedContext scope(rewriter, transfer.getLoc()); 335 IndexedValue remote(transfer.getMemRef()); 336 MemRefView view(transfer.getMemRef()); 337 ValueHandle vectorValue(transfer.getVector()); 338 VectorView vectorView(transfer.getVector()); 339 SmallVector<IndexHandle, 8> ivs = makeIndexHandles(vectorView.rank()); 340 SmallVector<ValueHandle *, 8> pivs = makeIndexHandlePointers(ivs); 341 coalesceCopy(transfer, &pivs, &vectorView); 342 343 auto lbs = vectorView.getLbs(); 344 auto ubs = vectorView.getUbs(); 345 auto steps = vectorView.getSteps(); 346 347 // 2. Emit alloc-store-copy-dealloc. 348 ValueHandle tmp = alloc(tmpMemRefType(transfer)); 349 IndexedValue local(tmp); 350 ValueHandle vec = vector_type_cast(tmp, vectorMemRefType(transfer)); 351 std_store(vectorValue, vec, {constant_index(0)}); 352 LoopNestBuilder(pivs, lbs, ubs, steps)([&] { 353 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 354 remote(clip(transfer, view, ivs)) = local(ivs); 355 }); 356 (dealloc(tmp)); // vexing parse... 357 358 rewriter.replaceOp(op, llvm::None); 359 return matchSuccess(); 360 } 361 362 struct LowerVectorTransfersPass 363 : public FunctionPass<LowerVectorTransfersPass> { 364 void runOnFunction() { 365 OwningRewritePatternList patterns; 366 auto *context = &getContext(); 367 patterns.insert<VectorTransferRewriter<vector::VectorTransferReadOp>, 368 VectorTransferRewriter<vector::VectorTransferWriteOp>>( 369 context); 370 applyPatternsGreedily(getFunction(), patterns); 371 } 372 }; 373 374 } // end anonymous namespace 375 376 std::unique_ptr<FunctionPassBase> mlir::createLowerVectorTransfersPass() { 377 return std::make_unique<LowerVectorTransfersPass>(); 378 } 379 380 static PassRegistration<LowerVectorTransfersPass> 381 pass("affine-lower-vector-transfers", 382 "Materializes vector transfer ops to a " 383 "proper abstraction for the hardware");