github.com/jonasi/go@v0.0.0-20150930005915-e78e654c1de0/src/runtime/mgc.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup. 6 // It has gotten completely out of control. 7 8 // Garbage collector (GC). 9 // 10 // The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple 11 // GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is 12 // non-generational and non-compacting. Allocation is done using size segregated per P allocation 13 // areas to minimize fragmentation while eliminating locks in the common case. 14 // 15 // The algorithm decomposes into several steps. 16 // This is a high level description of the algorithm being used. For an overview of GC a good 17 // place to start is Richard Jones' gchandbook.org. 18 // 19 // The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see 20 // Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978. 21 // On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978), 22 // 966-975. 23 // For journal quality proofs that these steps are complete, correct, and terminate see 24 // Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world. 25 // Concurrency and Computation: Practice and Experience 15(3-5), 2003. 26 // 27 // 0. Set phase = GCscan from GCoff. 28 // 1. Wait for all P's to acknowledge phase change. 29 // At this point all goroutines have passed through a GC safepoint and 30 // know we are in the GCscan phase. 31 // 2. GC scans all goroutine stacks, mark and enqueues all encountered pointers 32 // (marking avoids most duplicate enqueuing but races may produce benign duplication). 33 // Preempted goroutines are scanned before P schedules next goroutine. 34 // 3. Set phase = GCmark. 35 // 4. Wait for all P's to acknowledge phase change. 36 // 5. Now write barrier marks and enqueues black, grey, or white to white pointers. 37 // Malloc still allocates white (non-marked) objects. 38 // 6. Meanwhile GC transitively walks the heap marking reachable objects. 39 // 7. When GC finishes marking heap, it preempts P's one-by-one and 40 // retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine 41 // currently scheduled on the P). 42 // 8. Once the GC has exhausted all available marking work it sets phase = marktermination. 43 // 9. Wait for all P's to acknowledge phase change. 44 // 10. Malloc now allocates black objects, so number of unmarked reachable objects 45 // monotonically decreases. 46 // 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet 47 // reachable objects. 48 // 12. When GC completes a full cycle over P's and discovers no new grey 49 // objects, (which means all reachable objects are marked) set phase = GCoff. 50 // 13. Wait for all P's to acknowledge phase change. 51 // 14. Now malloc allocates white (but sweeps spans before use). 52 // Write barrier becomes nop. 53 // 15. GC does background sweeping, see description below. 54 // 16. When sufficient allocation has taken place replay the sequence starting at 0 above, 55 // see discussion of GC rate below. 56 57 // Changing phases. 58 // Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase. 59 // All phase action must be benign in the presence of a change. 60 // Starting with GCoff 61 // GCoff to GCscan 62 // GSscan scans stacks and globals greying them and never marks an object black. 63 // Once all the P's are aware of the new phase they will scan gs on preemption. 64 // This means that the scanning of preempted gs can't start until all the Ps 65 // have acknowledged. 66 // When a stack is scanned, this phase also installs stack barriers to 67 // track how much of the stack has been active. 68 // This transition enables write barriers because stack barriers 69 // assume that writes to higher frames will be tracked by write 70 // barriers. Technically this only needs write barriers for writes 71 // to stack slots, but we enable write barriers in general. 72 // GCscan to GCmark 73 // In GCmark, work buffers are drained until there are no more 74 // pointers to scan. 75 // No scanning of objects (making them black) can happen until all 76 // Ps have enabled the write barrier, but that already happened in 77 // the transition to GCscan. 78 // GCmark to GCmarktermination 79 // The only change here is that we start allocating black so the Ps must acknowledge 80 // the change before we begin the termination algorithm 81 // GCmarktermination to GSsweep 82 // Object currently on the freelist must be marked black for this to work. 83 // Are things on the free lists black or white? How does the sweep phase work? 84 85 // Concurrent sweep. 86 // 87 // The sweep phase proceeds concurrently with normal program execution. 88 // The heap is swept span-by-span both lazily (when a goroutine needs another span) 89 // and concurrently in a background goroutine (this helps programs that are not CPU bound). 90 // At the end of STW mark termination all spans are marked as "needs sweeping". 91 // 92 // The background sweeper goroutine simply sweeps spans one-by-one. 93 // 94 // To avoid requesting more OS memory while there are unswept spans, when a 95 // goroutine needs another span, it first attempts to reclaim that much memory 96 // by sweeping. When a goroutine needs to allocate a new small-object span, it 97 // sweeps small-object spans for the same object size until it frees at least 98 // one object. When a goroutine needs to allocate large-object span from heap, 99 // it sweeps spans until it frees at least that many pages into heap. There is 100 // one case where this may not suffice: if a goroutine sweeps and frees two 101 // nonadjacent one-page spans to the heap, it will allocate a new two-page 102 // span, but there can still be other one-page unswept spans which could be 103 // combined into a two-page span. 104 // 105 // It's critical to ensure that no operations proceed on unswept spans (that would corrupt 106 // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache, 107 // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it. 108 // When a goroutine explicitly frees an object or sets a finalizer, it ensures that 109 // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish). 110 // The finalizer goroutine is kicked off only when all spans are swept. 111 // When the next GC starts, it sweeps all not-yet-swept spans (if any). 112 113 // GC rate. 114 // Next GC is after we've allocated an extra amount of memory proportional to 115 // the amount already in use. The proportion is controlled by GOGC environment variable 116 // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M 117 // (this mark is tracked in next_gc variable). This keeps the GC cost in linear 118 // proportion to the allocation cost. Adjusting GOGC just changes the linear constant 119 // (and also the amount of extra memory used). 120 121 package runtime 122 123 import "unsafe" 124 125 const ( 126 _DebugGC = 0 127 _ConcurrentSweep = true 128 _FinBlockSize = 4 * 1024 129 130 _RootData = 0 131 _RootBss = 1 132 _RootFinalizers = 2 133 _RootFlushCaches = 3 134 _RootSpans0 = 4 135 _RootSpansShards = 128 136 _RootCount = _RootSpans0 + _RootSpansShards 137 138 // sweepMinHeapDistance is a lower bound on the heap distance 139 // (in bytes) reserved for concurrent sweeping between GC 140 // cycles. This will be scaled by gcpercent/100. 141 sweepMinHeapDistance = 1024 * 1024 142 ) 143 144 // heapminimum is the minimum heap size at which to trigger GC. 145 // For small heaps, this overrides the usual GOGC*live set rule. 146 // 147 // When there is a very small live set but a lot of allocation, simply 148 // collecting when the heap reaches GOGC*live results in many GC 149 // cycles and high total per-GC overhead. This minimum amortizes this 150 // per-GC overhead while keeping the heap reasonably small. 151 // 152 // During initialization this is set to 4MB*GOGC/100. In the case of 153 // GOGC==0, this will set heapminimum to 0, resulting in constant 154 // collection even when the heap size is small, which is useful for 155 // debugging. 156 var heapminimum uint64 = defaultHeapMinimum 157 158 // defaultHeapMinimum is the value of heapminimum for GOGC==100. 159 const defaultHeapMinimum = 4 << 20 160 161 // Initialized from $GOGC. GOGC=off means no GC. 162 var gcpercent int32 163 164 func gcinit() { 165 if unsafe.Sizeof(workbuf{}) != _WorkbufSize { 166 throw("size of Workbuf is suboptimal") 167 } 168 169 work.markfor = parforalloc(_MaxGcproc) 170 _ = setGCPercent(readgogc()) 171 for datap := &firstmoduledata; datap != nil; datap = datap.next { 172 datap.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcdata)), datap.edata-datap.data) 173 datap.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcbss)), datap.ebss-datap.bss) 174 } 175 memstats.next_gc = heapminimum 176 } 177 178 func readgogc() int32 { 179 p := gogetenv("GOGC") 180 if p == "" { 181 return 100 182 } 183 if p == "off" { 184 return -1 185 } 186 return int32(atoi(p)) 187 } 188 189 // gcenable is called after the bulk of the runtime initialization, 190 // just before we're about to start letting user code run. 191 // It kicks off the background sweeper goroutine and enables GC. 192 func gcenable() { 193 c := make(chan int, 1) 194 go bgsweep(c) 195 <-c 196 memstats.enablegc = true // now that runtime is initialized, GC is okay 197 } 198 199 func setGCPercent(in int32) (out int32) { 200 lock(&mheap_.lock) 201 out = gcpercent 202 if in < 0 { 203 in = -1 204 } 205 gcpercent = in 206 heapminimum = defaultHeapMinimum * uint64(gcpercent) / 100 207 unlock(&mheap_.lock) 208 return out 209 } 210 211 // Garbage collector phase. 212 // Indicates to write barrier and sychronization task to preform. 213 var gcphase uint32 214 var writeBarrierEnabled bool // compiler emits references to this in write barriers 215 216 // gcBlackenEnabled is 1 if mutator assists and background mark 217 // workers are allowed to blacken objects. This must only be set when 218 // gcphase == _GCmark. 219 var gcBlackenEnabled uint32 220 221 // gcBlackenPromptly indicates that optimizations that may 222 // hide work from the global work queue should be disabled. 223 // 224 // If gcBlackenPromptly is true, per-P gcWork caches should 225 // be flushed immediately and new objects should be allocated black. 226 // 227 // There is a tension between allocating objects white and 228 // allocating them black. If white and the objects die before being 229 // marked they can be collected during this GC cycle. On the other 230 // hand allocating them black will reduce _GCmarktermination latency 231 // since more work is done in the mark phase. This tension is resolved 232 // by allocating white until the mark phase is approaching its end and 233 // then allocating black for the remainder of the mark phase. 234 var gcBlackenPromptly bool 235 236 const ( 237 _GCoff = iota // GC not running; sweeping in background, write barrier disabled 238 _GCstw // unused state 239 _GCscan // GC collecting roots into workbufs, write barrier ENABLED 240 _GCmark // GC marking from workbufs, write barrier ENABLED 241 _GCmarktermination // GC mark termination: allocate black, P's help GC, write barrier ENABLED 242 ) 243 244 //go:nosplit 245 func setGCPhase(x uint32) { 246 atomicstore(&gcphase, x) 247 writeBarrierEnabled = gcphase == _GCmark || gcphase == _GCmarktermination || gcphase == _GCscan 248 } 249 250 // gcMarkWorkerMode represents the mode that a concurrent mark worker 251 // should operate in. 252 // 253 // Concurrent marking happens through four different mechanisms. One 254 // is mutator assists, which happen in response to allocations and are 255 // not scheduled. The other three are variations in the per-P mark 256 // workers and are distinguished by gcMarkWorkerMode. 257 type gcMarkWorkerMode int 258 259 const ( 260 // gcMarkWorkerDedicatedMode indicates that the P of a mark 261 // worker is dedicated to running that mark worker. The mark 262 // worker should run without preemption until concurrent mark 263 // is done. 264 gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota 265 266 // gcMarkWorkerFractionalMode indicates that a P is currently 267 // running the "fractional" mark worker. The fractional worker 268 // is necessary when GOMAXPROCS*gcGoalUtilization is not an 269 // integer. The fractional worker should run until it is 270 // preempted and will be scheduled to pick up the fractional 271 // part of GOMAXPROCS*gcGoalUtilization. 272 gcMarkWorkerFractionalMode 273 274 // gcMarkWorkerIdleMode indicates that a P is running the mark 275 // worker because it has nothing else to do. The idle worker 276 // should run until it is preempted and account its time 277 // against gcController.idleMarkTime. 278 gcMarkWorkerIdleMode 279 ) 280 281 // gcController implements the GC pacing controller that determines 282 // when to trigger concurrent garbage collection and how much marking 283 // work to do in mutator assists and background marking. 284 // 285 // It uses a feedback control algorithm to adjust the memstats.next_gc 286 // trigger based on the heap growth and GC CPU utilization each cycle. 287 // This algorithm optimizes for heap growth to match GOGC and for CPU 288 // utilization between assist and background marking to be 25% of 289 // GOMAXPROCS. The high-level design of this algorithm is documented 290 // at https://golang.org/s/go15gcpacing. 291 var gcController = gcControllerState{ 292 // Initial trigger ratio guess. 293 triggerRatio: 7 / 8.0, 294 } 295 296 type gcControllerState struct { 297 // scanWork is the total scan work performed this cycle. This 298 // is updated atomically during the cycle. Updates may be 299 // batched arbitrarily, since the value is only read at the 300 // end of the cycle. 301 // 302 // Currently this is the bytes of heap scanned. For most uses, 303 // this is an opaque unit of work, but for estimation the 304 // definition is important. 305 scanWork int64 306 307 // bgScanCredit is the scan work credit accumulated by the 308 // concurrent background scan. This credit is accumulated by 309 // the background scan and stolen by mutator assists. This is 310 // updated atomically. Updates occur in bounded batches, since 311 // it is both written and read throughout the cycle. 312 bgScanCredit int64 313 314 // assistTime is the nanoseconds spent in mutator assists 315 // during this cycle. This is updated atomically. Updates 316 // occur in bounded batches, since it is both written and read 317 // throughout the cycle. 318 assistTime int64 319 320 // dedicatedMarkTime is the nanoseconds spent in dedicated 321 // mark workers during this cycle. This is updated atomically 322 // at the end of the concurrent mark phase. 323 dedicatedMarkTime int64 324 325 // fractionalMarkTime is the nanoseconds spent in the 326 // fractional mark worker during this cycle. This is updated 327 // atomically throughout the cycle and will be up-to-date if 328 // the fractional mark worker is not currently running. 329 fractionalMarkTime int64 330 331 // idleMarkTime is the nanoseconds spent in idle marking 332 // during this cycle. This is updated atomically throughout 333 // the cycle. 334 idleMarkTime int64 335 336 // bgMarkStartTime is the absolute start time in nanoseconds 337 // that the background mark phase started. 338 bgMarkStartTime int64 339 340 // assistTime is the absolute start time in nanoseconds that 341 // mutator assists were enabled. 342 assistStartTime int64 343 344 // heapGoal is the goal memstats.heap_live for when this cycle 345 // ends. This is computed at the beginning of each cycle. 346 heapGoal uint64 347 348 // dedicatedMarkWorkersNeeded is the number of dedicated mark 349 // workers that need to be started. This is computed at the 350 // beginning of each cycle and decremented atomically as 351 // dedicated mark workers get started. 352 dedicatedMarkWorkersNeeded int64 353 354 // assistRatio is the ratio of allocated bytes to scan work 355 // that should be performed by mutator assists. This is 356 // computed at the beginning of each cycle and updated every 357 // time heap_scan is updated. 358 assistRatio float64 359 360 // fractionalUtilizationGoal is the fraction of wall clock 361 // time that should be spent in the fractional mark worker. 362 // For example, if the overall mark utilization goal is 25% 363 // and GOMAXPROCS is 6, one P will be a dedicated mark worker 364 // and this will be set to 0.5 so that 50% of the time some P 365 // is in a fractional mark worker. This is computed at the 366 // beginning of each cycle. 367 fractionalUtilizationGoal float64 368 369 // triggerRatio is the heap growth ratio at which the garbage 370 // collection cycle should start. E.g., if this is 0.6, then 371 // GC should start when the live heap has reached 1.6 times 372 // the heap size marked by the previous cycle. This is updated 373 // at the end of of each cycle. 374 triggerRatio float64 375 376 _ [_CacheLineSize]byte 377 378 // fractionalMarkWorkersNeeded is the number of fractional 379 // mark workers that need to be started. This is either 0 or 380 // 1. This is potentially updated atomically at every 381 // scheduling point (hence it gets its own cache line). 382 fractionalMarkWorkersNeeded int64 383 384 _ [_CacheLineSize]byte 385 } 386 387 // startCycle resets the GC controller's state and computes estimates 388 // for a new GC cycle. The caller must hold worldsema. 389 func (c *gcControllerState) startCycle() { 390 c.scanWork = 0 391 c.bgScanCredit = 0 392 c.assistTime = 0 393 c.dedicatedMarkTime = 0 394 c.fractionalMarkTime = 0 395 c.idleMarkTime = 0 396 397 // If this is the first GC cycle or we're operating on a very 398 // small heap, fake heap_marked so it looks like next_gc is 399 // the appropriate growth from heap_marked, even though the 400 // real heap_marked may not have a meaningful value (on the 401 // first cycle) or may be much smaller (resulting in a large 402 // error response). 403 if memstats.next_gc <= heapminimum { 404 memstats.heap_marked = uint64(float64(memstats.next_gc) / (1 + c.triggerRatio)) 405 memstats.heap_reachable = memstats.heap_marked 406 } 407 408 // Compute the heap goal for this cycle 409 c.heapGoal = memstats.heap_reachable + memstats.heap_reachable*uint64(gcpercent)/100 410 411 // Compute the total mark utilization goal and divide it among 412 // dedicated and fractional workers. 413 totalUtilizationGoal := float64(gomaxprocs) * gcGoalUtilization 414 c.dedicatedMarkWorkersNeeded = int64(totalUtilizationGoal) 415 c.fractionalUtilizationGoal = totalUtilizationGoal - float64(c.dedicatedMarkWorkersNeeded) 416 if c.fractionalUtilizationGoal > 0 { 417 c.fractionalMarkWorkersNeeded = 1 418 } else { 419 c.fractionalMarkWorkersNeeded = 0 420 } 421 422 // Clear per-P state 423 for _, p := range &allp { 424 if p == nil { 425 break 426 } 427 p.gcAssistTime = 0 428 } 429 430 // Compute initial values for controls that are updated 431 // throughout the cycle. 432 c.revise() 433 434 if debug.gcpacertrace > 0 { 435 print("pacer: assist ratio=", c.assistRatio, 436 " (scan ", memstats.heap_scan>>20, " MB in ", 437 work.initialHeapLive>>20, "->", 438 c.heapGoal>>20, " MB)", 439 " workers=", c.dedicatedMarkWorkersNeeded, 440 "+", c.fractionalMarkWorkersNeeded, "\n") 441 } 442 } 443 444 // revise updates the assist ratio during the GC cycle to account for 445 // improved estimates. This should be called either under STW or 446 // whenever memstats.heap_scan is updated (with mheap_.lock held). 447 func (c *gcControllerState) revise() { 448 // Compute the expected scan work. This is a strict upper 449 // bound on the possible scan work in the current heap. 450 // 451 // You might consider dividing this by 2 (or by 452 // (100+GOGC)/100) to counter this over-estimation, but 453 // benchmarks show that this has almost no effect on mean 454 // mutator utilization, heap size, or assist time and it 455 // introduces the danger of under-estimating and letting the 456 // mutator outpace the garbage collector. 457 scanWorkExpected := memstats.heap_scan 458 459 // Compute the mutator assist ratio so by the time the mutator 460 // allocates the remaining heap bytes up to next_gc, it will 461 // have done (or stolen) the estimated amount of scan work. 462 heapDistance := int64(c.heapGoal) - int64(work.initialHeapLive) 463 if heapDistance <= 1024*1024 { 464 // heapDistance can be negative if GC start is delayed 465 // or if the allocation that pushed heap_live over 466 // next_gc is large or if the trigger is really close 467 // to GOGC. We don't want to set the assist negative 468 // (or divide by zero, or set it really high), so 469 // enforce a minimum on the distance. 470 heapDistance = 1024 * 1024 471 } 472 c.assistRatio = float64(scanWorkExpected) / float64(heapDistance) 473 } 474 475 // endCycle updates the GC controller state at the end of the 476 // concurrent part of the GC cycle. 477 func (c *gcControllerState) endCycle() { 478 h_t := c.triggerRatio // For debugging 479 480 // Proportional response gain for the trigger controller. Must 481 // be in [0, 1]. Lower values smooth out transient effects but 482 // take longer to respond to phase changes. Higher values 483 // react to phase changes quickly, but are more affected by 484 // transient changes. Values near 1 may be unstable. 485 const triggerGain = 0.5 486 487 // Compute next cycle trigger ratio. First, this computes the 488 // "error" for this cycle; that is, how far off the trigger 489 // was from what it should have been, accounting for both heap 490 // growth and GC CPU utilization. We compute the actual heap 491 // growth during this cycle and scale that by how far off from 492 // the goal CPU utilization we were (to estimate the heap 493 // growth if we had the desired CPU utilization). The 494 // difference between this estimate and the GOGC-based goal 495 // heap growth is the error. 496 // 497 // TODO(austin): next_gc is based on heap_reachable, not 498 // heap_marked, which means the actual growth ratio 499 // technically isn't comparable to the trigger ratio. 500 goalGrowthRatio := float64(gcpercent) / 100 501 actualGrowthRatio := float64(memstats.heap_live)/float64(memstats.heap_marked) - 1 502 assistDuration := nanotime() - c.assistStartTime 503 504 // Assume background mark hit its utilization goal. 505 utilization := gcGoalUtilization 506 // Add assist utilization; avoid divide by zero. 507 if assistDuration > 0 { 508 utilization += float64(c.assistTime) / float64(assistDuration*int64(gomaxprocs)) 509 } 510 511 triggerError := goalGrowthRatio - c.triggerRatio - utilization/gcGoalUtilization*(actualGrowthRatio-c.triggerRatio) 512 513 // Finally, we adjust the trigger for next time by this error, 514 // damped by the proportional gain. 515 c.triggerRatio += triggerGain * triggerError 516 if c.triggerRatio < 0 { 517 // This can happen if the mutator is allocating very 518 // quickly or the GC is scanning very slowly. 519 c.triggerRatio = 0 520 } else if c.triggerRatio > goalGrowthRatio*0.95 { 521 // Ensure there's always a little margin so that the 522 // mutator assist ratio isn't infinity. 523 c.triggerRatio = goalGrowthRatio * 0.95 524 } 525 526 if debug.gcpacertrace > 0 { 527 // Print controller state in terms of the design 528 // document. 529 H_m_prev := memstats.heap_marked 530 H_T := memstats.next_gc 531 h_a := actualGrowthRatio 532 H_a := memstats.heap_live 533 h_g := goalGrowthRatio 534 H_g := int64(float64(H_m_prev) * (1 + h_g)) 535 u_a := utilization 536 u_g := gcGoalUtilization 537 W_a := c.scanWork 538 print("pacer: H_m_prev=", H_m_prev, 539 " h_t=", h_t, " H_T=", H_T, 540 " h_a=", h_a, " H_a=", H_a, 541 " h_g=", h_g, " H_g=", H_g, 542 " u_a=", u_a, " u_g=", u_g, 543 " W_a=", W_a, 544 " goalΔ=", goalGrowthRatio-h_t, 545 " actualΔ=", h_a-h_t, 546 " u_a/u_g=", u_a/u_g, 547 "\n") 548 } 549 } 550 551 // findRunnableGCWorker returns the background mark worker for _p_ if it 552 // should be run. This must only be called when gcBlackenEnabled != 0. 553 func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g { 554 if gcBlackenEnabled == 0 { 555 throw("gcControllerState.findRunnable: blackening not enabled") 556 } 557 if _p_.gcBgMarkWorker == nil { 558 throw("gcControllerState.findRunnable: no background mark worker") 559 } 560 if work.bgMark1.done != 0 && work.bgMark2.done != 0 { 561 // Background mark is done. Don't schedule background 562 // mark worker any more. (This is not just an 563 // optimization. Without this we can spin scheduling 564 // the background worker and having it return 565 // immediately with no work to do.) 566 return nil 567 } 568 569 decIfPositive := func(ptr *int64) bool { 570 if *ptr > 0 { 571 if xaddint64(ptr, -1) >= 0 { 572 return true 573 } 574 // We lost a race 575 xaddint64(ptr, +1) 576 } 577 return false 578 } 579 580 if decIfPositive(&c.dedicatedMarkWorkersNeeded) { 581 // This P is now dedicated to marking until the end of 582 // the concurrent mark phase. 583 _p_.gcMarkWorkerMode = gcMarkWorkerDedicatedMode 584 // TODO(austin): This P isn't going to run anything 585 // else for a while, so kick everything out of its run 586 // queue. 587 } else { 588 if _p_.gcw.wbuf == 0 && work.full == 0 && work.partial == 0 { 589 // No work to be done right now. This can 590 // happen at the end of the mark phase when 591 // there are still assists tapering off. Don't 592 // bother running background mark because 593 // it'll just return immediately. 594 if work.nwait == work.nproc { 595 // There are also no workers, which 596 // means we've reached a completion point. 597 // There may not be any workers to 598 // signal it, so signal it here. 599 readied := false 600 if gcBlackenPromptly { 601 if work.bgMark1.done == 0 { 602 throw("completing mark 2, but bgMark1.done == 0") 603 } 604 readied = work.bgMark2.complete() 605 } else { 606 readied = work.bgMark1.complete() 607 } 608 if readied { 609 // complete just called ready, 610 // but we're inside the 611 // scheduler. Let it know that 612 // that's okay. 613 resetspinning() 614 } 615 } 616 return nil 617 } 618 if !decIfPositive(&c.fractionalMarkWorkersNeeded) { 619 // No more workers are need right now. 620 return nil 621 } 622 623 // This P has picked the token for the fractional worker. 624 // Is the GC currently under or at the utilization goal? 625 // If so, do more work. 626 // 627 // We used to check whether doing one time slice of work 628 // would remain under the utilization goal, but that has the 629 // effect of delaying work until the mutator has run for 630 // enough time slices to pay for the work. During those time 631 // slices, write barriers are enabled, so the mutator is running slower. 632 // Now instead we do the work whenever we're under or at the 633 // utilization work and pay for it by letting the mutator run later. 634 // This doesn't change the overall utilization averages, but it 635 // front loads the GC work so that the GC finishes earlier and 636 // write barriers can be turned off sooner, effectively giving 637 // the mutator a faster machine. 638 // 639 // The old, slower behavior can be restored by setting 640 // gcForcePreemptNS = forcePreemptNS. 641 const gcForcePreemptNS = 0 642 643 // TODO(austin): We could fast path this and basically 644 // eliminate contention on c.fractionalMarkWorkersNeeded by 645 // precomputing the minimum time at which it's worth 646 // next scheduling the fractional worker. Then Ps 647 // don't have to fight in the window where we've 648 // passed that deadline and no one has started the 649 // worker yet. 650 // 651 // TODO(austin): Shorter preemption interval for mark 652 // worker to improve fairness and give this 653 // finer-grained control over schedule? 654 now := nanotime() - gcController.bgMarkStartTime 655 then := now + gcForcePreemptNS 656 timeUsed := c.fractionalMarkTime + gcForcePreemptNS 657 if then > 0 && float64(timeUsed)/float64(then) > c.fractionalUtilizationGoal { 658 // Nope, we'd overshoot the utilization goal 659 xaddint64(&c.fractionalMarkWorkersNeeded, +1) 660 return nil 661 } 662 _p_.gcMarkWorkerMode = gcMarkWorkerFractionalMode 663 } 664 665 // Run the background mark worker 666 gp := _p_.gcBgMarkWorker 667 casgstatus(gp, _Gwaiting, _Grunnable) 668 if trace.enabled { 669 traceGoUnpark(gp, 0) 670 } 671 return gp 672 } 673 674 // gcGoalUtilization is the goal CPU utilization for background 675 // marking as a fraction of GOMAXPROCS. 676 const gcGoalUtilization = 0.25 677 678 // gcBgCreditSlack is the amount of scan work credit background 679 // scanning can accumulate locally before updating 680 // gcController.bgScanCredit. Lower values give mutator assists more 681 // accurate accounting of background scanning. Higher values reduce 682 // memory contention. 683 const gcBgCreditSlack = 2000 684 685 // gcAssistTimeSlack is the nanoseconds of mutator assist time that 686 // can accumulate on a P before updating gcController.assistTime. 687 const gcAssistTimeSlack = 5000 688 689 // Determine whether to initiate a GC. 690 // If the GC is already working no need to trigger another one. 691 // This should establish a feedback loop where if the GC does not 692 // have sufficient time to complete then more memory will be 693 // requested from the OS increasing heap size thus allow future 694 // GCs more time to complete. 695 // memstat.heap_live read has a benign race. 696 // A false negative simple does not start a GC, a false positive 697 // will start a GC needlessly. Neither have correctness issues. 698 func shouldtriggergc() bool { 699 return memstats.heap_live >= memstats.next_gc && atomicloaduint(&bggc.working) == 0 700 } 701 702 // bgMarkSignal synchronizes the GC coordinator and background mark workers. 703 type bgMarkSignal struct { 704 // Workers race to cas to 1. Winner signals coordinator. 705 done uint32 706 // Coordinator to wake up. 707 lock mutex 708 g *g 709 wake bool 710 } 711 712 func (s *bgMarkSignal) wait() { 713 lock(&s.lock) 714 if s.wake { 715 // Wakeup already happened 716 unlock(&s.lock) 717 } else { 718 s.g = getg() 719 goparkunlock(&s.lock, "mark wait (idle)", traceEvGoBlock, 1) 720 } 721 s.wake = false 722 s.g = nil 723 } 724 725 // complete signals the completion of this phase of marking. This can 726 // be called multiple times during a cycle; only the first call has 727 // any effect. 728 // 729 // The caller should arrange to deschedule itself as soon as possible 730 // after calling complete in order to let the coordinator goroutine 731 // run. 732 func (s *bgMarkSignal) complete() bool { 733 if cas(&s.done, 0, 1) { 734 // This is the first worker to reach this completion point. 735 // Signal the main GC goroutine. 736 lock(&s.lock) 737 if s.g == nil { 738 // It hasn't parked yet. 739 s.wake = true 740 } else { 741 ready(s.g, 0) 742 } 743 unlock(&s.lock) 744 return true 745 } 746 return false 747 } 748 749 func (s *bgMarkSignal) clear() { 750 s.done = 0 751 } 752 753 var work struct { 754 full uint64 // lock-free list of full blocks workbuf 755 empty uint64 // lock-free list of empty blocks workbuf 756 // TODO(rlh): partial no longer used, remove. (issue #11922) 757 partial uint64 // lock-free list of partially filled blocks workbuf 758 pad0 [_CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait 759 nproc uint32 760 tstart int64 761 nwait uint32 762 ndone uint32 763 alldone note 764 markfor *parfor 765 766 bgMarkReady note // signal background mark worker has started 767 bgMarkDone uint32 // cas to 1 when at a background mark completion point 768 // Background mark completion signaling 769 770 // Coordination for the 2 parts of the mark phase. 771 bgMark1 bgMarkSignal 772 bgMark2 bgMarkSignal 773 774 // Copy of mheap.allspans for marker or sweeper. 775 spans []*mspan 776 777 // totaltime is the CPU nanoseconds spent in GC since the 778 // program started if debug.gctrace > 0. 779 totaltime int64 780 781 // bytesMarked is the number of bytes marked this cycle. This 782 // includes bytes blackened in scanned objects, noscan objects 783 // that go straight to black, and permagrey objects scanned by 784 // markroot during the concurrent scan phase. This is updated 785 // atomically during the cycle. Updates may be batched 786 // arbitrarily, since the value is only read at the end of the 787 // cycle. 788 // 789 // Because of benign races during marking, this number may not 790 // be the exact number of marked bytes, but it should be very 791 // close. 792 bytesMarked uint64 793 794 // initialHeapLive is the value of memstats.heap_live at the 795 // beginning of this GC cycle. 796 initialHeapLive uint64 797 } 798 799 // GC runs a garbage collection and blocks the caller until the 800 // garbage collection is complete. It may also block the entire 801 // program. 802 func GC() { 803 startGC(gcForceBlockMode, false) 804 } 805 806 const ( 807 gcBackgroundMode = iota // concurrent GC 808 gcForceMode // stop-the-world GC now 809 gcForceBlockMode // stop-the-world GC now and wait for sweep 810 ) 811 812 // startGC starts a GC cycle. If mode is gcBackgroundMode, this will 813 // start GC in the background and return. Otherwise, this will block 814 // until the new GC cycle is started and finishes. If forceTrigger is 815 // true, it indicates that GC should be started regardless of the 816 // current heap size. 817 func startGC(mode int, forceTrigger bool) { 818 // The gc is turned off (via enablegc) until the bootstrap has completed. 819 // Also, malloc gets called in the guts of a number of libraries that might be 820 // holding locks. To avoid deadlocks during stop-the-world, don't bother 821 // trying to run gc while holding a lock. The next mallocgc without a lock 822 // will do the gc instead. 823 mp := acquirem() 824 if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" || !memstats.enablegc || panicking != 0 || gcpercent < 0 { 825 releasem(mp) 826 return 827 } 828 releasem(mp) 829 mp = nil 830 831 if debug.gcstoptheworld == 1 { 832 mode = gcForceMode 833 } else if debug.gcstoptheworld == 2 { 834 mode = gcForceBlockMode 835 } 836 837 if mode != gcBackgroundMode { 838 // special synchronous cases 839 gc(mode) 840 return 841 } 842 843 // trigger concurrent GC 844 readied := false 845 lock(&bggc.lock) 846 // The trigger was originally checked speculatively, so 847 // recheck that this really should trigger GC. (For example, 848 // we may have gone through a whole GC cycle since the 849 // speculative check.) 850 if !(forceTrigger || shouldtriggergc()) { 851 unlock(&bggc.lock) 852 return 853 } 854 if !bggc.started { 855 bggc.working = 1 856 bggc.started = true 857 readied = true 858 go backgroundgc() 859 } else if bggc.working == 0 { 860 bggc.working = 1 861 readied = true 862 ready(bggc.g, 0) 863 } 864 unlock(&bggc.lock) 865 if readied { 866 // This G just started or ready()d the GC goroutine. 867 // Switch directly to it by yielding. 868 Gosched() 869 } 870 } 871 872 // State of the background concurrent GC goroutine. 873 var bggc struct { 874 lock mutex 875 g *g 876 working uint 877 started bool 878 } 879 880 // backgroundgc is running in a goroutine and does the concurrent GC work. 881 // bggc holds the state of the backgroundgc. 882 func backgroundgc() { 883 bggc.g = getg() 884 for { 885 gc(gcBackgroundMode) 886 lock(&bggc.lock) 887 bggc.working = 0 888 goparkunlock(&bggc.lock, "Concurrent GC wait", traceEvGoBlock, 1) 889 } 890 } 891 892 func gc(mode int) { 893 // Timing/utilization tracking 894 var stwprocs, maxprocs int32 895 var tSweepTerm, tScan, tInstallWB, tMark, tMarkTerm int64 896 897 // debug.gctrace variables 898 var heap0, heap1, heap2, heapGoal uint64 899 900 // memstats statistics 901 var now, pauseStart, pauseNS int64 902 903 // Ok, we're doing it! Stop everybody else 904 semacquire(&worldsema, false) 905 906 // Pick up the remaining unswept/not being swept spans concurrently 907 // 908 // This shouldn't happen if we're being invoked in background 909 // mode since proportional sweep should have just finished 910 // sweeping everything, but rounding errors, etc, may leave a 911 // few spans unswept. In forced mode, this is necessary since 912 // GC can be forced at any point in the sweeping cycle. 913 for gosweepone() != ^uintptr(0) { 914 sweep.nbgsweep++ 915 } 916 917 if trace.enabled { 918 traceGCStart() 919 } 920 921 if mode == gcBackgroundMode { 922 gcBgMarkStartWorkers() 923 } 924 now = nanotime() 925 stwprocs, maxprocs = gcprocs(), gomaxprocs 926 tSweepTerm = now 927 heap0 = memstats.heap_live 928 929 pauseStart = now 930 systemstack(stopTheWorldWithSema) 931 systemstack(finishsweep_m) // finish sweep before we start concurrent scan. 932 // clearpools before we start the GC. If we wait they memory will not be 933 // reclaimed until the next GC cycle. 934 clearpools() 935 936 gcResetMarkState() 937 938 if mode == gcBackgroundMode { // Do as much work concurrently as possible 939 gcController.startCycle() 940 heapGoal = gcController.heapGoal 941 942 systemstack(func() { 943 // Enter scan phase. This enables write 944 // barriers to track changes to stack frames 945 // above the stack barrier. 946 // 947 // TODO: This has evolved to the point where 948 // we carefully ensure invariants we no longer 949 // depend on. Either: 950 // 951 // 1) Enable full write barriers for the scan, 952 // but eliminate the ragged barrier below 953 // (since the start the world ensures all Ps 954 // have observed the write barrier enable) and 955 // consider draining during the scan. 956 // 957 // 2) Only enable write barriers for writes to 958 // the stack at this point, and then enable 959 // write barriers for heap writes when we 960 // enter the mark phase. This means we cannot 961 // drain in the scan phase and must perform a 962 // ragged barrier to ensure all Ps have 963 // enabled heap write barriers before we drain 964 // or enable assists. 965 // 966 // 3) Don't install stack barriers over frame 967 // boundaries where there are up-pointers. 968 setGCPhase(_GCscan) 969 970 gcBgMarkPrepare() // Must happen before assist enable. 971 972 // At this point all Ps have enabled the write 973 // barrier, thus maintaining the no white to 974 // black invariant. Enable mutator assists to 975 // put back-pressure on fast allocating 976 // mutators. 977 atomicstore(&gcBlackenEnabled, 1) 978 979 // Concurrent scan. 980 startTheWorldWithSema() 981 now = nanotime() 982 pauseNS += now - pauseStart 983 tScan = now 984 gcController.assistStartTime = now 985 gcscan_m() 986 987 // Enter mark phase. 988 tInstallWB = nanotime() 989 setGCPhase(_GCmark) 990 // Ensure all Ps have observed the phase 991 // change and have write barriers enabled 992 // before any blackening occurs. 993 forEachP(func(*p) {}) 994 }) 995 // Concurrent mark. 996 tMark = nanotime() 997 998 // Enable background mark workers and wait for 999 // background mark completion. 1000 gcController.bgMarkStartTime = nanotime() 1001 work.bgMark1.clear() 1002 work.bgMark1.wait() 1003 1004 // The global work list is empty, but there can still be work 1005 // sitting in the per-P work caches and there can be more 1006 // objects reachable from global roots since they don't have write 1007 // barriers. Rescan some roots and flush work caches. 1008 systemstack(func() { 1009 // rescan global data and bss. 1010 markroot(nil, _RootData) 1011 markroot(nil, _RootBss) 1012 1013 // Disallow caching workbufs. 1014 gcBlackenPromptly = true 1015 1016 // Flush all currently cached workbufs. This 1017 // also forces any remaining background 1018 // workers out of their loop. 1019 forEachP(func(_p_ *p) { 1020 _p_.gcw.dispose() 1021 }) 1022 }) 1023 1024 // Wait for this more aggressive background mark to complete. 1025 work.bgMark2.clear() 1026 work.bgMark2.wait() 1027 1028 // Begin mark termination. 1029 now = nanotime() 1030 tMarkTerm = now 1031 pauseStart = now 1032 systemstack(stopTheWorldWithSema) 1033 // The gcphase is _GCmark, it will transition to _GCmarktermination 1034 // below. The important thing is that the wb remains active until 1035 // all marking is complete. This includes writes made by the GC. 1036 1037 // Flush the gcWork caches. This must be done before 1038 // endCycle since endCycle depends on statistics kept 1039 // in these caches. 1040 gcFlushGCWork() 1041 1042 gcController.endCycle() 1043 } else { 1044 // For non-concurrent GC (mode != gcBackgroundMode) 1045 // The g stacks have not been scanned so clear g state 1046 // such that mark termination scans all stacks. 1047 gcResetGState() 1048 1049 t := nanotime() 1050 tScan, tInstallWB, tMark, tMarkTerm = t, t, t, t 1051 heapGoal = heap0 1052 } 1053 1054 // World is stopped. 1055 // Start marktermination which includes enabling the write barrier. 1056 atomicstore(&gcBlackenEnabled, 0) 1057 gcBlackenPromptly = false 1058 setGCPhase(_GCmarktermination) 1059 1060 heap1 = memstats.heap_live 1061 startTime := nanotime() 1062 1063 mp := acquirem() 1064 mp.preemptoff = "gcing" 1065 _g_ := getg() 1066 _g_.m.traceback = 2 1067 gp := _g_.m.curg 1068 casgstatus(gp, _Grunning, _Gwaiting) 1069 gp.waitreason = "garbage collection" 1070 1071 // Run gc on the g0 stack. We do this so that the g stack 1072 // we're currently running on will no longer change. Cuts 1073 // the root set down a bit (g0 stacks are not scanned, and 1074 // we don't need to scan gc's internal state). We also 1075 // need to switch to g0 so we can shrink the stack. 1076 systemstack(func() { 1077 gcMark(startTime) 1078 // Must return immediately. 1079 // The outer function's stack may have moved 1080 // during gcMark (it shrinks stacks, including the 1081 // outer function's stack), so we must not refer 1082 // to any of its variables. Return back to the 1083 // non-system stack to pick up the new addresses 1084 // before continuing. 1085 }) 1086 1087 systemstack(func() { 1088 heap2 = work.bytesMarked 1089 if debug.gccheckmark > 0 { 1090 // Run a full stop-the-world mark using checkmark bits, 1091 // to check that we didn't forget to mark anything during 1092 // the concurrent mark process. 1093 gcResetGState() // Rescan stacks 1094 gcResetMarkState() 1095 initCheckmarks() 1096 gcMark(startTime) 1097 clearCheckmarks() 1098 } 1099 1100 // marking is complete so we can turn the write barrier off 1101 setGCPhase(_GCoff) 1102 gcSweep(mode) 1103 1104 if debug.gctrace > 1 { 1105 startTime = nanotime() 1106 // The g stacks have been scanned so 1107 // they have gcscanvalid==true and gcworkdone==true. 1108 // Reset these so that all stacks will be rescanned. 1109 gcResetGState() 1110 gcResetMarkState() 1111 finishsweep_m() 1112 1113 // Still in STW but gcphase is _GCoff, reset to _GCmarktermination 1114 // At this point all objects will be found during the gcMark which 1115 // does a complete STW mark and object scan. 1116 setGCPhase(_GCmarktermination) 1117 gcMark(startTime) 1118 setGCPhase(_GCoff) // marking is done, turn off wb. 1119 gcSweep(mode) 1120 } 1121 }) 1122 1123 _g_.m.traceback = 0 1124 casgstatus(gp, _Gwaiting, _Grunning) 1125 1126 if trace.enabled { 1127 traceGCDone() 1128 } 1129 1130 // all done 1131 mp.preemptoff = "" 1132 1133 if gcphase != _GCoff { 1134 throw("gc done but gcphase != _GCoff") 1135 } 1136 1137 // Update timing memstats 1138 now, unixNow := nanotime(), unixnanotime() 1139 pauseNS += now - pauseStart 1140 atomicstore64(&memstats.last_gc, uint64(unixNow)) // must be Unix time to make sense to user 1141 memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(pauseNS) 1142 memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow) 1143 memstats.pause_total_ns += uint64(pauseNS) 1144 1145 // Update work.totaltime. 1146 sweepTermCpu := int64(stwprocs) * (tScan - tSweepTerm) 1147 scanCpu := tInstallWB - tScan 1148 installWBCpu := int64(0) 1149 // We report idle marking time below, but omit it from the 1150 // overall utilization here since it's "free". 1151 markCpu := gcController.assistTime + gcController.dedicatedMarkTime + gcController.fractionalMarkTime 1152 markTermCpu := int64(stwprocs) * (now - tMarkTerm) 1153 cycleCpu := sweepTermCpu + scanCpu + installWBCpu + markCpu + markTermCpu 1154 work.totaltime += cycleCpu 1155 1156 // Compute overall GC CPU utilization. 1157 totalCpu := sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs) 1158 memstats.gc_cpu_fraction = float64(work.totaltime) / float64(totalCpu) 1159 1160 memstats.numgc++ 1161 1162 systemstack(startTheWorldWithSema) 1163 semrelease(&worldsema) 1164 1165 releasem(mp) 1166 mp = nil 1167 1168 if debug.gctrace > 0 { 1169 tEnd := now 1170 util := int(memstats.gc_cpu_fraction * 100) 1171 1172 var sbuf [24]byte 1173 printlock() 1174 print("gc ", memstats.numgc, 1175 " @", string(itoaDiv(sbuf[:], uint64(tSweepTerm-runtimeInitTime)/1e6, 3)), "s ", 1176 util, "%: ") 1177 prev := tSweepTerm 1178 for i, ns := range []int64{tScan, tInstallWB, tMark, tMarkTerm, tEnd} { 1179 if i != 0 { 1180 print("+") 1181 } 1182 print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev)))) 1183 prev = ns 1184 } 1185 print(" ms clock, ") 1186 for i, ns := range []int64{sweepTermCpu, scanCpu, installWBCpu, gcController.assistTime, gcController.dedicatedMarkTime + gcController.fractionalMarkTime, gcController.idleMarkTime, markTermCpu} { 1187 if i == 4 || i == 5 { 1188 // Separate mark time components with /. 1189 print("/") 1190 } else if i != 0 { 1191 print("+") 1192 } 1193 print(string(fmtNSAsMS(sbuf[:], uint64(ns)))) 1194 } 1195 print(" ms cpu, ", 1196 heap0>>20, "->", heap1>>20, "->", heap2>>20, " MB, ", 1197 heapGoal>>20, " MB goal, ", 1198 maxprocs, " P") 1199 if mode != gcBackgroundMode { 1200 print(" (forced)") 1201 } 1202 print("\n") 1203 printunlock() 1204 } 1205 sweep.nbgsweep = 0 1206 sweep.npausesweep = 0 1207 1208 // now that gc is done, kick off finalizer thread if needed 1209 if !concurrentSweep { 1210 // give the queued finalizers, if any, a chance to run 1211 Gosched() 1212 } 1213 } 1214 1215 // gcBgMarkStartWorkers prepares background mark worker goroutines. 1216 // These goroutines will not run until the mark phase, but they must 1217 // be started while the work is not stopped and from a regular G 1218 // stack. The caller must hold worldsema. 1219 func gcBgMarkStartWorkers() { 1220 // Background marking is performed by per-P G's. Ensure that 1221 // each P has a background GC G. 1222 for _, p := range &allp { 1223 if p == nil || p.status == _Pdead { 1224 break 1225 } 1226 if p.gcBgMarkWorker == nil { 1227 go gcBgMarkWorker(p) 1228 notetsleepg(&work.bgMarkReady, -1) 1229 noteclear(&work.bgMarkReady) 1230 } 1231 } 1232 } 1233 1234 // gcBgMarkPrepare sets up state for background marking. 1235 // Mutator assists must not yet be enabled. 1236 func gcBgMarkPrepare() { 1237 // Background marking will stop when the work queues are empty 1238 // and there are no more workers (note that, since this is 1239 // concurrent, this may be a transient state, but mark 1240 // termination will clean it up). Between background workers 1241 // and assists, we don't really know how many workers there 1242 // will be, so we pretend to have an arbitrarily large number 1243 // of workers, almost all of which are "waiting". While a 1244 // worker is working it decrements nwait. If nproc == nwait, 1245 // there are no workers. 1246 work.nproc = ^uint32(0) 1247 work.nwait = ^uint32(0) 1248 1249 // Reset background mark completion points. 1250 work.bgMark1.done = 1 1251 work.bgMark2.done = 1 1252 } 1253 1254 func gcBgMarkWorker(p *p) { 1255 // Register this G as the background mark worker for p. 1256 if p.gcBgMarkWorker != nil { 1257 throw("P already has a background mark worker") 1258 } 1259 gp := getg() 1260 1261 mp := acquirem() 1262 p.gcBgMarkWorker = gp 1263 // After this point, the background mark worker is scheduled 1264 // cooperatively by gcController.findRunnable. Hence, it must 1265 // never be preempted, as this would put it into _Grunnable 1266 // and put it on a run queue. Instead, when the preempt flag 1267 // is set, this puts itself into _Gwaiting to be woken up by 1268 // gcController.findRunnable at the appropriate time. 1269 notewakeup(&work.bgMarkReady) 1270 for { 1271 // Go to sleep until woken by gcContoller.findRunnable. 1272 // We can't releasem yet since even the call to gopark 1273 // may be preempted. 1274 gopark(func(g *g, mp unsafe.Pointer) bool { 1275 releasem((*m)(mp)) 1276 return true 1277 }, unsafe.Pointer(mp), "mark worker (idle)", traceEvGoBlock, 0) 1278 1279 // Loop until the P dies and disassociates this 1280 // worker. (The P may later be reused, in which case 1281 // it will get a new worker.) 1282 if p.gcBgMarkWorker != gp { 1283 break 1284 } 1285 1286 // Disable preemption so we can use the gcw. If the 1287 // scheduler wants to preempt us, we'll stop draining, 1288 // dispose the gcw, and then preempt. 1289 mp = acquirem() 1290 1291 if gcBlackenEnabled == 0 { 1292 throw("gcBgMarkWorker: blackening not enabled") 1293 } 1294 1295 startTime := nanotime() 1296 1297 decnwait := xadd(&work.nwait, -1) 1298 if decnwait == work.nproc { 1299 println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc) 1300 throw("work.nwait was > work.nproc") 1301 } 1302 1303 done := false 1304 switch p.gcMarkWorkerMode { 1305 default: 1306 throw("gcBgMarkWorker: unexpected gcMarkWorkerMode") 1307 case gcMarkWorkerDedicatedMode: 1308 gcDrain(&p.gcw, gcBgCreditSlack) 1309 // gcDrain did the xadd(&work.nwait +1) to 1310 // match the decrement above. It only returns 1311 // at a mark completion point. 1312 done = true 1313 if !p.gcw.empty() { 1314 throw("gcDrain returned with buffer") 1315 } 1316 case gcMarkWorkerFractionalMode, gcMarkWorkerIdleMode: 1317 gcDrainUntilPreempt(&p.gcw, gcBgCreditSlack) 1318 1319 // If we are nearing the end of mark, dispose 1320 // of the cache promptly. We must do this 1321 // before signaling that we're no longer 1322 // working so that other workers can't observe 1323 // no workers and no work while we have this 1324 // cached, and before we compute done. 1325 if gcBlackenPromptly { 1326 p.gcw.dispose() 1327 } 1328 1329 // Was this the last worker and did we run out 1330 // of work? 1331 incnwait := xadd(&work.nwait, +1) 1332 if incnwait > work.nproc { 1333 println("runtime: p.gcMarkWorkerMode=", p.gcMarkWorkerMode, 1334 "work.nwait=", incnwait, "work.nproc=", work.nproc) 1335 throw("work.nwait > work.nproc") 1336 } 1337 done = incnwait == work.nproc && work.full == 0 && work.partial == 0 1338 } 1339 1340 // If this worker reached a background mark completion 1341 // point, signal the main GC goroutine. 1342 if done { 1343 if gcBlackenPromptly { 1344 if work.bgMark1.done == 0 { 1345 throw("completing mark 2, but bgMark1.done == 0") 1346 } 1347 work.bgMark2.complete() 1348 } else { 1349 work.bgMark1.complete() 1350 } 1351 } 1352 1353 duration := nanotime() - startTime 1354 switch p.gcMarkWorkerMode { 1355 case gcMarkWorkerDedicatedMode: 1356 xaddint64(&gcController.dedicatedMarkTime, duration) 1357 xaddint64(&gcController.dedicatedMarkWorkersNeeded, 1) 1358 case gcMarkWorkerFractionalMode: 1359 xaddint64(&gcController.fractionalMarkTime, duration) 1360 xaddint64(&gcController.fractionalMarkWorkersNeeded, 1) 1361 case gcMarkWorkerIdleMode: 1362 xaddint64(&gcController.idleMarkTime, duration) 1363 } 1364 } 1365 } 1366 1367 // gcMarkWorkAvailable returns true if executing a mark worker 1368 // on p is potentially useful. 1369 func gcMarkWorkAvailable(p *p) bool { 1370 if !p.gcw.empty() { 1371 return true 1372 } 1373 if atomicload64(&work.full) != 0 || atomicload64(&work.partial) != 0 { 1374 return true // global work available 1375 } 1376 return false 1377 } 1378 1379 // gcFlushGCWork disposes the gcWork caches of all Ps. The world must 1380 // be stopped. 1381 //go:nowritebarrier 1382 func gcFlushGCWork() { 1383 // Gather all cached GC work. All other Ps are stopped, so 1384 // it's safe to manipulate their GC work caches. 1385 for i := 0; i < int(gomaxprocs); i++ { 1386 allp[i].gcw.dispose() 1387 } 1388 } 1389 1390 // gcMark runs the mark (or, for concurrent GC, mark termination) 1391 // STW is in effect at this point. 1392 //TODO go:nowritebarrier 1393 func gcMark(start_time int64) { 1394 if debug.allocfreetrace > 0 { 1395 tracegc() 1396 } 1397 1398 if gcphase != _GCmarktermination { 1399 throw("in gcMark expecting to see gcphase as _GCmarktermination") 1400 } 1401 work.tstart = start_time 1402 1403 gcCopySpans() // TODO(rlh): should this be hoisted and done only once? Right now it is done for normal marking and also for checkmarking. 1404 1405 // Make sure the per-P gcWork caches are empty. During mark 1406 // termination, these caches can still be used temporarily, 1407 // but must be disposed to the global lists immediately. 1408 gcFlushGCWork() 1409 1410 work.nwait = 0 1411 work.ndone = 0 1412 work.nproc = uint32(gcprocs()) 1413 1414 if trace.enabled { 1415 traceGCScanStart() 1416 } 1417 1418 parforsetup(work.markfor, work.nproc, uint32(_RootCount+allglen), false, markroot) 1419 if work.nproc > 1 { 1420 noteclear(&work.alldone) 1421 helpgc(int32(work.nproc)) 1422 } 1423 1424 gchelperstart() 1425 parfordo(work.markfor) 1426 1427 var gcw gcWork 1428 gcDrain(&gcw, -1) 1429 gcw.dispose() 1430 1431 if work.full != 0 { 1432 throw("work.full != 0") 1433 } 1434 if work.partial != 0 { 1435 throw("work.partial != 0") 1436 } 1437 1438 if work.nproc > 1 { 1439 notesleep(&work.alldone) 1440 } 1441 1442 for i := 0; i < int(gomaxprocs); i++ { 1443 if allp[i].gcw.wbuf != 0 { 1444 throw("P has cached GC work at end of mark termination") 1445 } 1446 } 1447 1448 if trace.enabled { 1449 traceGCScanDone() 1450 } 1451 1452 // TODO(austin): This doesn't have to be done during STW, as 1453 // long as we block the next GC cycle until this is done. Move 1454 // it after we start the world, but before dropping worldsema. 1455 // (See issue #11465.) 1456 freeStackSpans() 1457 1458 cachestats() 1459 1460 // Compute the reachable heap size at the beginning of the 1461 // cycle. This is approximately the marked heap size at the 1462 // end (which we know) minus the amount of marked heap that 1463 // was allocated after marking began (which we don't know, but 1464 // is approximately the amount of heap that was allocated 1465 // since marking began). 1466 allocatedDuringCycle := memstats.heap_live - work.initialHeapLive 1467 if work.bytesMarked >= allocatedDuringCycle { 1468 memstats.heap_reachable = work.bytesMarked - allocatedDuringCycle 1469 } else { 1470 // This can happen if most of the allocation during 1471 // the cycle never became reachable from the heap. 1472 // Just set the reachable heap approximation to 0 and 1473 // let the heapminimum kick in below. 1474 memstats.heap_reachable = 0 1475 } 1476 1477 // Trigger the next GC cycle when the allocated heap has grown 1478 // by triggerRatio over the reachable heap size. Assume that 1479 // we're in steady state, so the reachable heap size is the 1480 // same now as it was at the beginning of the GC cycle. 1481 memstats.next_gc = uint64(float64(memstats.heap_reachable) * (1 + gcController.triggerRatio)) 1482 if memstats.next_gc < heapminimum { 1483 memstats.next_gc = heapminimum 1484 } 1485 if int64(memstats.next_gc) < 0 { 1486 print("next_gc=", memstats.next_gc, " bytesMarked=", work.bytesMarked, " heap_live=", memstats.heap_live, " initialHeapLive=", work.initialHeapLive, "\n") 1487 throw("next_gc underflow") 1488 } 1489 1490 // Update other GC heap size stats. 1491 memstats.heap_live = work.bytesMarked 1492 memstats.heap_marked = work.bytesMarked 1493 memstats.heap_scan = uint64(gcController.scanWork) 1494 1495 minNextGC := memstats.heap_live + sweepMinHeapDistance*uint64(gcpercent)/100 1496 if memstats.next_gc < minNextGC { 1497 // The allocated heap is already past the trigger. 1498 // This can happen if the triggerRatio is very low and 1499 // the reachable heap estimate is less than the live 1500 // heap size. 1501 // 1502 // Concurrent sweep happens in the heap growth from 1503 // heap_live to next_gc, so bump next_gc up to ensure 1504 // that concurrent sweep has some heap growth in which 1505 // to perform sweeping before we start the next GC 1506 // cycle. 1507 memstats.next_gc = minNextGC 1508 } 1509 1510 if trace.enabled { 1511 traceHeapAlloc() 1512 traceNextGC() 1513 } 1514 } 1515 1516 func gcSweep(mode int) { 1517 if gcphase != _GCoff { 1518 throw("gcSweep being done but phase is not GCoff") 1519 } 1520 gcCopySpans() 1521 1522 lock(&mheap_.lock) 1523 mheap_.sweepgen += 2 1524 mheap_.sweepdone = 0 1525 sweep.spanidx = 0 1526 unlock(&mheap_.lock) 1527 1528 if !_ConcurrentSweep || mode == gcForceBlockMode { 1529 // Special case synchronous sweep. 1530 // Record that no proportional sweeping has to happen. 1531 lock(&mheap_.lock) 1532 mheap_.sweepPagesPerByte = 0 1533 mheap_.pagesSwept = 0 1534 unlock(&mheap_.lock) 1535 // Sweep all spans eagerly. 1536 for sweepone() != ^uintptr(0) { 1537 sweep.npausesweep++ 1538 } 1539 // Do an additional mProf_GC, because all 'free' events are now real as well. 1540 mProf_GC() 1541 mProf_GC() 1542 return 1543 } 1544 1545 // Account how much sweeping needs to be done before the next 1546 // GC cycle and set up proportional sweep statistics. 1547 var pagesToSweep uintptr 1548 for _, s := range work.spans { 1549 if s.state == mSpanInUse { 1550 pagesToSweep += s.npages 1551 } 1552 } 1553 heapDistance := int64(memstats.next_gc) - int64(memstats.heap_live) 1554 // Add a little margin so rounding errors and concurrent 1555 // sweep are less likely to leave pages unswept when GC starts. 1556 heapDistance -= 1024 * 1024 1557 if heapDistance < _PageSize { 1558 // Avoid setting the sweep ratio extremely high 1559 heapDistance = _PageSize 1560 } 1561 lock(&mheap_.lock) 1562 mheap_.sweepPagesPerByte = float64(pagesToSweep) / float64(heapDistance) 1563 mheap_.pagesSwept = 0 1564 mheap_.spanBytesAlloc = 0 1565 unlock(&mheap_.lock) 1566 1567 // Background sweep. 1568 lock(&sweep.lock) 1569 if sweep.parked { 1570 sweep.parked = false 1571 ready(sweep.g, 0) 1572 } 1573 unlock(&sweep.lock) 1574 mProf_GC() 1575 } 1576 1577 func gcCopySpans() { 1578 // Cache runtime.mheap_.allspans in work.spans to avoid conflicts with 1579 // resizing/freeing allspans. 1580 // New spans can be created while GC progresses, but they are not garbage for 1581 // this round: 1582 // - new stack spans can be created even while the world is stopped. 1583 // - new malloc spans can be created during the concurrent sweep 1584 // Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap. 1585 lock(&mheap_.lock) 1586 // Free the old cached mark array if necessary. 1587 if work.spans != nil && &work.spans[0] != &h_allspans[0] { 1588 sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys) 1589 } 1590 // Cache the current array for sweeping. 1591 mheap_.gcspans = mheap_.allspans 1592 work.spans = h_allspans 1593 unlock(&mheap_.lock) 1594 } 1595 1596 // gcResetGState resets the GC state of all G's and returns the length 1597 // of allgs. 1598 func gcResetGState() (numgs int) { 1599 // This may be called during a concurrent phase, so make sure 1600 // allgs doesn't change. 1601 lock(&allglock) 1602 for _, gp := range allgs { 1603 gp.gcscandone = false // set to true in gcphasework 1604 gp.gcscanvalid = false // stack has not been scanned 1605 gp.gcalloc = 0 1606 gp.gcscanwork = 0 1607 } 1608 numgs = len(allgs) 1609 unlock(&allglock) 1610 return 1611 } 1612 1613 // gcResetMarkState resets state prior to marking (concurrent or STW). 1614 // 1615 // TODO(austin): Merge with gcResetGState. See issue #11427. 1616 func gcResetMarkState() { 1617 work.bytesMarked = 0 1618 work.initialHeapLive = memstats.heap_live 1619 } 1620 1621 // Hooks for other packages 1622 1623 var poolcleanup func() 1624 1625 //go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup 1626 func sync_runtime_registerPoolCleanup(f func()) { 1627 poolcleanup = f 1628 } 1629 1630 func clearpools() { 1631 // clear sync.Pools 1632 if poolcleanup != nil { 1633 poolcleanup() 1634 } 1635 1636 // Clear central sudog cache. 1637 // Leave per-P caches alone, they have strictly bounded size. 1638 // Disconnect cached list before dropping it on the floor, 1639 // so that a dangling ref to one entry does not pin all of them. 1640 lock(&sched.sudoglock) 1641 var sg, sgnext *sudog 1642 for sg = sched.sudogcache; sg != nil; sg = sgnext { 1643 sgnext = sg.next 1644 sg.next = nil 1645 } 1646 sched.sudogcache = nil 1647 unlock(&sched.sudoglock) 1648 1649 // Clear central defer pools. 1650 // Leave per-P pools alone, they have strictly bounded size. 1651 lock(&sched.deferlock) 1652 for i := range sched.deferpool { 1653 // disconnect cached list before dropping it on the floor, 1654 // so that a dangling ref to one entry does not pin all of them. 1655 var d, dlink *_defer 1656 for d = sched.deferpool[i]; d != nil; d = dlink { 1657 dlink = d.link 1658 d.link = nil 1659 } 1660 sched.deferpool[i] = nil 1661 } 1662 unlock(&sched.deferlock) 1663 1664 for _, p := range &allp { 1665 if p == nil { 1666 break 1667 } 1668 // clear tinyalloc pool 1669 if c := p.mcache; c != nil { 1670 c.tiny = nil 1671 c.tinyoffset = 0 1672 } 1673 } 1674 } 1675 1676 // Timing 1677 1678 //go:nowritebarrier 1679 func gchelper() { 1680 _g_ := getg() 1681 _g_.m.traceback = 2 1682 gchelperstart() 1683 1684 if trace.enabled { 1685 traceGCScanStart() 1686 } 1687 1688 // parallel mark for over GC roots 1689 parfordo(work.markfor) 1690 if gcphase != _GCscan { 1691 var gcw gcWork 1692 gcDrain(&gcw, -1) // blocks in getfull 1693 gcw.dispose() 1694 } 1695 1696 if trace.enabled { 1697 traceGCScanDone() 1698 } 1699 1700 nproc := work.nproc // work.nproc can change right after we increment work.ndone 1701 if xadd(&work.ndone, +1) == nproc-1 { 1702 notewakeup(&work.alldone) 1703 } 1704 _g_.m.traceback = 0 1705 } 1706 1707 func gchelperstart() { 1708 _g_ := getg() 1709 1710 if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc { 1711 throw("gchelperstart: bad m->helpgc") 1712 } 1713 if _g_ != _g_.m.g0 { 1714 throw("gchelper not running on g0 stack") 1715 } 1716 } 1717 1718 // itoaDiv formats val/(10**dec) into buf. 1719 func itoaDiv(buf []byte, val uint64, dec int) []byte { 1720 i := len(buf) - 1 1721 idec := i - dec 1722 for val >= 10 || i >= idec { 1723 buf[i] = byte(val%10 + '0') 1724 i-- 1725 if i == idec { 1726 buf[i] = '.' 1727 i-- 1728 } 1729 val /= 10 1730 } 1731 buf[i] = byte(val + '0') 1732 return buf[i:] 1733 } 1734 1735 // fmtNSAsMS nicely formats ns nanoseconds as milliseconds. 1736 func fmtNSAsMS(buf []byte, ns uint64) []byte { 1737 if ns >= 10e6 { 1738 // Format as whole milliseconds. 1739 return itoaDiv(buf, ns/1e6, 0) 1740 } 1741 // Format two digits of precision, with at most three decimal places. 1742 x := ns / 1e3 1743 if x == 0 { 1744 buf[0] = '0' 1745 return buf[:1] 1746 } 1747 dec := 3 1748 for x >= 100 { 1749 x /= 10 1750 dec-- 1751 } 1752 return itoaDiv(buf, x, dec) 1753 }