github.com/joomcode/cue@v0.4.4-0.20221111115225-539fe3512047/pkg/math/math.go (about) 1 // Copyright 2018 The CUE Authors 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Copyright 2018 The Go Authors. All rights reserved. 16 // Use of this source code is governed by a BSD-style 17 // license that can be found in the LICENSE file. 18 19 package math 20 21 import ( 22 "math" 23 24 "github.com/cockroachdb/apd/v2" 25 26 "github.com/joomcode/cue/internal" 27 ) 28 29 var apdContext = apd.BaseContext.WithPrecision(24) 30 31 // Abs returns the absolute value of x. 32 // 33 // Special case: Abs(±Inf) = +Inf 34 func Abs(x *internal.Decimal) (*internal.Decimal, error) { 35 var d internal.Decimal 36 _, err := apdContext.Abs(&d, x) 37 return &d, err 38 } 39 40 // Acosh returns the inverse hyperbolic cosine of x. 41 // 42 // Special cases are: 43 // Acosh(+Inf) = +Inf 44 // Acosh(x) = NaN if x < 1 45 // Acosh(NaN) = NaN 46 func Acosh(x float64) float64 { 47 return math.Acosh(x) 48 } 49 50 // Asin returns the arcsine, in radians, of x. 51 // 52 // Special cases are: 53 // Asin(±0) = ±0 54 // Asin(x) = NaN if x < -1 or x > 1 55 func Asin(x float64) float64 { 56 return math.Asin(x) 57 } 58 59 // Acos returns the arccosine, in radians, of x. 60 // 61 // Special case is: 62 // Acos(x) = NaN if x < -1 or x > 1 63 func Acos(x float64) float64 { 64 return math.Acos(x) 65 } 66 67 // Asinh returns the inverse hyperbolic sine of x. 68 // 69 // Special cases are: 70 // Asinh(±0) = ±0 71 // Asinh(±Inf) = ±Inf 72 // Asinh(NaN) = NaN 73 func Asinh(x float64) float64 { 74 return math.Asinh(x) 75 } 76 77 // Atan returns the arctangent, in radians, of x. 78 // 79 // Special cases are: 80 // Atan(±0) = ±0 81 // Atan(±Inf) = ±Pi/2 82 func Atan(x float64) float64 { 83 return math.Atan(x) 84 } 85 86 // Atan2 returns the arc tangent of y/x, using 87 // the signs of the two to determine the quadrant 88 // of the return value. 89 // 90 // Special cases are (in order): 91 // Atan2(y, NaN) = NaN 92 // Atan2(NaN, x) = NaN 93 // Atan2(+0, x>=0) = +0 94 // Atan2(-0, x>=0) = -0 95 // Atan2(+0, x<=-0) = +Pi 96 // Atan2(-0, x<=-0) = -Pi 97 // Atan2(y>0, 0) = +Pi/2 98 // Atan2(y<0, 0) = -Pi/2 99 // Atan2(+Inf, +Inf) = +Pi/4 100 // Atan2(-Inf, +Inf) = -Pi/4 101 // Atan2(+Inf, -Inf) = 3Pi/4 102 // Atan2(-Inf, -Inf) = -3Pi/4 103 // Atan2(y, +Inf) = 0 104 // Atan2(y>0, -Inf) = +Pi 105 // Atan2(y<0, -Inf) = -Pi 106 // Atan2(+Inf, x) = +Pi/2 107 // Atan2(-Inf, x) = -Pi/2 108 func Atan2(y, x float64) float64 { 109 return math.Atan2(y, x) 110 } 111 112 // Atanh returns the inverse hyperbolic tangent of x. 113 // 114 // Special cases are: 115 // Atanh(1) = +Inf 116 // Atanh(±0) = ±0 117 // Atanh(-1) = -Inf 118 // Atanh(x) = NaN if x < -1 or x > 1 119 // Atanh(NaN) = NaN 120 func Atanh(x float64) float64 { 121 return math.Atanh(x) 122 } 123 124 // Cbrt returns the cube root of x. 125 // 126 // Special cases are: 127 // Cbrt(±0) = ±0 128 // Cbrt(±Inf) = ±Inf 129 // Cbrt(NaN) = NaN 130 func Cbrt(x *internal.Decimal) (*internal.Decimal, error) { 131 var d internal.Decimal 132 _, err := apdContext.Cbrt(&d, x) 133 return &d, err 134 } 135 136 // Mathematical constants. 137 const ( 138 E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113 139 Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796 140 Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622 141 142 Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193 143 SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774 144 SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161 145 SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339 146 147 Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162 148 Log2E = 1000000000000000000000000000000000000000000000000000000000000000 / 693147180559945309417232121458176568075500134360255254120680009 149 Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392 150 Log10E = 10000000000000000000000000000000000000000000000000000000000000 / 23025850929940456840179914546843642076011014886287729760333279 151 ) 152 153 // Copysign returns a value with the magnitude 154 // of x and the sign of y. 155 func Copysign(x, y *internal.Decimal) *internal.Decimal { 156 var d internal.Decimal 157 d.Set(x) 158 d.Negative = y.Negative 159 return &d 160 } 161 162 var zero = apd.New(0, 0) 163 164 // Dim returns the maximum of x-y or 0. 165 // 166 // Special cases are: 167 // Dim(+Inf, +Inf) = NaN 168 // Dim(-Inf, -Inf) = NaN 169 // Dim(x, NaN) = Dim(NaN, x) = NaN 170 func Dim(x, y *internal.Decimal) (*internal.Decimal, error) { 171 var d internal.Decimal 172 _, err := apdContext.Sub(&d, x, y) 173 if err != nil { 174 return nil, err 175 } 176 if d.Negative { 177 return zero, nil 178 } 179 return &d, nil 180 } 181 182 // Erf returns the error function of x. 183 // 184 // Special cases are: 185 // Erf(+Inf) = 1 186 // Erf(-Inf) = -1 187 // Erf(NaN) = NaN 188 func Erf(x float64) float64 { 189 return math.Erf(x) 190 } 191 192 // Erfc returns the complementary error function of x. 193 // 194 // Special cases are: 195 // Erfc(+Inf) = 0 196 // Erfc(-Inf) = 2 197 // Erfc(NaN) = NaN 198 func Erfc(x float64) float64 { 199 return math.Erfc(x) 200 } 201 202 // Erfinv returns the inverse error function of x. 203 // 204 // Special cases are: 205 // Erfinv(1) = +Inf 206 // Erfinv(-1) = -Inf 207 // Erfinv(x) = NaN if x < -1 or x > 1 208 // Erfinv(NaN) = NaN 209 func Erfinv(x float64) float64 { 210 return math.Erfinv(x) 211 } 212 213 // Erfcinv returns the inverse of Erfc(x). 214 // 215 // Special cases are: 216 // Erfcinv(0) = +Inf 217 // Erfcinv(2) = -Inf 218 // Erfcinv(x) = NaN if x < 0 or x > 2 219 // Erfcinv(NaN) = NaN 220 func Erfcinv(x float64) float64 { 221 return math.Erfcinv(x) 222 } 223 224 // Exp returns e**x, the base-e exponential of x. 225 // 226 // Special cases are: 227 // Exp(+Inf) = +Inf 228 // Exp(NaN) = NaN 229 // Very large values overflow to 0 or +Inf. 230 // Very small values underflow to 1. 231 func Exp(x *internal.Decimal) (*internal.Decimal, error) { 232 var d internal.Decimal 233 _, err := apdContext.Exp(&d, x) 234 return &d, err 235 } 236 237 var two = apd.New(2, 0) 238 239 // Exp2 returns 2**x, the base-2 exponential of x. 240 // 241 // Special cases are the same as Exp. 242 func Exp2(x *internal.Decimal) (*internal.Decimal, error) { 243 var d internal.Decimal 244 _, err := apdContext.Pow(&d, two, x) 245 return &d, err 246 } 247 248 // Expm1 returns e**x - 1, the base-e exponential of x minus 1. 249 // It is more accurate than Exp(x) - 1 when x is near zero. 250 // 251 // Special cases are: 252 // Expm1(+Inf) = +Inf 253 // Expm1(-Inf) = -1 254 // Expm1(NaN) = NaN 255 // Very large values overflow to -1 or +Inf. 256 func Expm1(x float64) float64 { 257 return math.Expm1(x) 258 } 259 260 // Gamma returns the Gamma function of x. 261 // 262 // Special cases are: 263 // Gamma(+Inf) = +Inf 264 // Gamma(+0) = +Inf 265 // Gamma(-0) = -Inf 266 // Gamma(x) = NaN for integer x < 0 267 // Gamma(-Inf) = NaN 268 // Gamma(NaN) = NaN 269 func Gamma(x float64) float64 { 270 return math.Gamma(x) 271 } 272 273 // Hypot returns Sqrt(p*p + q*q), taking care to avoid 274 // unnecessary overflow and underflow. 275 // 276 // Special cases are: 277 // Hypot(±Inf, q) = +Inf 278 // Hypot(p, ±Inf) = +Inf 279 // Hypot(NaN, q) = NaN 280 // Hypot(p, NaN) = NaN 281 func Hypot(p, q float64) float64 { 282 return math.Hypot(p, q) 283 } 284 285 // J0 returns the order-zero Bessel function of the first kind. 286 // 287 // Special cases are: 288 // J0(±Inf) = 0 289 // J0(0) = 1 290 // J0(NaN) = NaN 291 func J0(x float64) float64 { 292 return math.J0(x) 293 } 294 295 // Y0 returns the order-zero Bessel function of the second kind. 296 // 297 // Special cases are: 298 // Y0(+Inf) = 0 299 // Y0(0) = -Inf 300 // Y0(x < 0) = NaN 301 // Y0(NaN) = NaN 302 func Y0(x float64) float64 { 303 return math.Y0(x) 304 } 305 306 // J1 returns the order-one Bessel function of the first kind. 307 // 308 // Special cases are: 309 // J1(±Inf) = 0 310 // J1(NaN) = NaN 311 func J1(x float64) float64 { 312 return math.J1(x) 313 } 314 315 // Y1 returns the order-one Bessel function of the second kind. 316 // 317 // Special cases are: 318 // Y1(+Inf) = 0 319 // Y1(0) = -Inf 320 // Y1(x < 0) = NaN 321 // Y1(NaN) = NaN 322 func Y1(x float64) float64 { 323 return math.Y1(x) 324 } 325 326 // Jn returns the order-n Bessel function of the first kind. 327 // 328 // Special cases are: 329 // Jn(n, ±Inf) = 0 330 // Jn(n, NaN) = NaN 331 func Jn(n int, x float64) float64 { 332 return math.Jn(n, x) 333 } 334 335 // Yn returns the order-n Bessel function of the second kind. 336 // 337 // Special cases are: 338 // Yn(n, +Inf) = 0 339 // Yn(n ≥ 0, 0) = -Inf 340 // Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even 341 // Yn(n, x < 0) = NaN 342 // Yn(n, NaN) = NaN 343 func Yn(n int, x float64) float64 { 344 return math.Yn(n, x) 345 } 346 347 // Ldexp is the inverse of Frexp. 348 // It returns frac × 2**exp. 349 // 350 // Special cases are: 351 // Ldexp(±0, exp) = ±0 352 // Ldexp(±Inf, exp) = ±Inf 353 // Ldexp(NaN, exp) = NaN 354 func Ldexp(frac float64, exp int) float64 { 355 return math.Ldexp(frac, exp) 356 } 357 358 // Log returns the natural logarithm of x. 359 // 360 // Special cases are: 361 // Log(+Inf) = +Inf 362 // Log(0) = -Inf 363 // Log(x < 0) = NaN 364 // Log(NaN) = NaN 365 func Log(x *internal.Decimal) (*internal.Decimal, error) { 366 var d internal.Decimal 367 _, err := apdContext.Ln(&d, x) 368 return &d, err 369 } 370 371 // Log10 returns the decimal logarithm of x. 372 // The special cases are the same as for Log. 373 func Log10(x *internal.Decimal) (*internal.Decimal, error) { 374 var d internal.Decimal 375 _, err := apdContext.Log10(&d, x) 376 return &d, err 377 } 378 379 // Log2 returns the binary logarithm of x. 380 // The special cases are the same as for Log. 381 func Log2(x *internal.Decimal) (*internal.Decimal, error) { 382 var d, ln2 internal.Decimal 383 _, _ = apdContext.Ln(&ln2, two) 384 _, err := apdContext.Ln(&d, x) 385 if err != nil { 386 return &d, err 387 } 388 _, err = apdContext.Quo(&d, &d, &ln2) 389 return &d, err 390 } 391 392 // Log1p returns the natural logarithm of 1 plus its argument x. 393 // It is more accurate than Log(1 + x) when x is near zero. 394 // 395 // Special cases are: 396 // Log1p(+Inf) = +Inf 397 // Log1p(±0) = ±0 398 // Log1p(-1) = -Inf 399 // Log1p(x < -1) = NaN 400 // Log1p(NaN) = NaN 401 func Log1p(x float64) float64 { 402 return math.Log1p(x) 403 } 404 405 // Logb returns the binary exponent of x. 406 // 407 // Special cases are: 408 // Logb(±Inf) = +Inf 409 // Logb(0) = -Inf 410 // Logb(NaN) = NaN 411 func Logb(x float64) float64 { 412 return math.Logb(x) 413 } 414 415 // Ilogb returns the binary exponent of x as an integer. 416 // 417 // Special cases are: 418 // Ilogb(±Inf) = MaxInt32 419 // Ilogb(0) = MinInt32 420 // Ilogb(NaN) = MaxInt32 421 func Ilogb(x float64) int { 422 return math.Ilogb(x) 423 } 424 425 // Mod returns the floating-point remainder of x/y. 426 // The magnitude of the result is less than y and its 427 // sign agrees with that of x. 428 // 429 // Special cases are: 430 // Mod(±Inf, y) = NaN 431 // Mod(NaN, y) = NaN 432 // Mod(x, 0) = NaN 433 // Mod(x, ±Inf) = x 434 // Mod(x, NaN) = NaN 435 func Mod(x, y float64) float64 { 436 return math.Mod(x, y) 437 } 438 439 // Pow returns x**y, the base-x exponential of y. 440 // 441 // Special cases are (in order): 442 // Pow(x, ±0) = 1 for any x 443 // Pow(1, y) = 1 for any y 444 // Pow(x, 1) = x for any x 445 // Pow(NaN, y) = NaN 446 // Pow(x, NaN) = NaN 447 // Pow(±0, y) = ±Inf for y an odd integer < 0 448 // Pow(±0, -Inf) = +Inf 449 // Pow(±0, +Inf) = +0 450 // Pow(±0, y) = +Inf for finite y < 0 and not an odd integer 451 // Pow(±0, y) = ±0 for y an odd integer > 0 452 // Pow(±0, y) = +0 for finite y > 0 and not an odd integer 453 // Pow(-1, ±Inf) = 1 454 // Pow(x, +Inf) = +Inf for |x| > 1 455 // Pow(x, -Inf) = +0 for |x| > 1 456 // Pow(x, +Inf) = +0 for |x| < 1 457 // Pow(x, -Inf) = +Inf for |x| < 1 458 // Pow(+Inf, y) = +Inf for y > 0 459 // Pow(+Inf, y) = +0 for y < 0 460 // Pow(-Inf, y) = Pow(-0, -y) 461 // Pow(x, y) = NaN for finite x < 0 and finite non-integer y 462 func Pow(x, y *internal.Decimal) (*internal.Decimal, error) { 463 var d internal.Decimal 464 _, err := apdContext.Pow(&d, x, y) 465 return &d, err 466 } 467 468 // Pow10 returns 10**n, the base-10 exponential of n. 469 // 470 func Pow10(n int32) *internal.Decimal { 471 return apd.New(1, n) 472 } 473 474 // Remainder returns the IEEE 754 floating-point remainder of x/y. 475 // 476 // Special cases are: 477 // Remainder(±Inf, y) = NaN 478 // Remainder(NaN, y) = NaN 479 // Remainder(x, 0) = NaN 480 // Remainder(x, ±Inf) = x 481 // Remainder(x, NaN) = NaN 482 func Remainder(x, y float64) float64 { 483 return math.Remainder(x, y) 484 } 485 486 // Signbit reports whether x is negative or negative zero. 487 func Signbit(x *internal.Decimal) bool { 488 return x.Negative 489 } 490 491 // Cos returns the cosine of the radian argument x. 492 // 493 // Special cases are: 494 // Cos(±Inf) = NaN 495 // Cos(NaN) = NaN 496 func Cos(x float64) float64 { 497 return math.Cos(x) 498 } 499 500 // Sin returns the sine of the radian argument x. 501 // 502 // Special cases are: 503 // Sin(±0) = ±0 504 // Sin(±Inf) = NaN 505 // Sin(NaN) = NaN 506 func Sin(x float64) float64 { 507 return math.Sin(x) 508 } 509 510 // Sinh returns the hyperbolic sine of x. 511 // 512 // Special cases are: 513 // Sinh(±0) = ±0 514 // Sinh(±Inf) = ±Inf 515 // Sinh(NaN) = NaN 516 func Sinh(x float64) float64 { 517 return math.Sinh(x) 518 } 519 520 // Cosh returns the hyperbolic cosine of x. 521 // 522 // Special cases are: 523 // Cosh(±0) = 1 524 // Cosh(±Inf) = +Inf 525 // Cosh(NaN) = NaN 526 func Cosh(x float64) float64 { 527 return math.Cosh(x) 528 } 529 530 // Sqrt returns the square root of x. 531 // 532 // Special cases are: 533 // Sqrt(+Inf) = +Inf 534 // Sqrt(±0) = ±0 535 // Sqrt(x < 0) = NaN 536 // Sqrt(NaN) = NaN 537 func Sqrt(x float64) float64 { 538 return math.Sqrt(x) 539 } 540 541 // Tan returns the tangent of the radian argument x. 542 // 543 // Special cases are: 544 // Tan(±0) = ±0 545 // Tan(±Inf) = NaN 546 // Tan(NaN) = NaN 547 func Tan(x float64) float64 { 548 return math.Tan(x) 549 } 550 551 // Tanh returns the hyperbolic tangent of x. 552 // 553 // Special cases are: 554 // Tanh(±0) = ±0 555 // Tanh(±Inf) = ±1 556 // Tanh(NaN) = NaN 557 func Tanh(x float64) float64 { 558 return math.Tanh(x) 559 }