github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/opencv4/include/opencv2/calib3d.hpp (about) 1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved. 16 // Third party copyrights are property of their respective owners. 17 // 18 // Redistribution and use in source and binary forms, with or without modification, 19 // are permitted provided that the following conditions are met: 20 // 21 // * Redistribution's of source code must retain the above copyright notice, 22 // this list of conditions and the following disclaimer. 23 // 24 // * Redistribution's in binary form must reproduce the above copyright notice, 25 // this list of conditions and the following disclaimer in the documentation 26 // and/or other materials provided with the distribution. 27 // 28 // * The name of the copyright holders may not be used to endorse or promote products 29 // derived from this software without specific prior written permission. 30 // 31 // This software is provided by the copyright holders and contributors "as is" and 32 // any express or implied warranties, including, but not limited to, the implied 33 // warranties of merchantability and fitness for a particular purpose are disclaimed. 34 // In no event shall the Intel Corporation or contributors be liable for any direct, 35 // indirect, incidental, special, exemplary, or consequential damages 36 // (including, but not limited to, procurement of substitute goods or services; 37 // loss of use, data, or profits; or business interruption) however caused 38 // and on any theory of liability, whether in contract, strict liability, 39 // or tort (including negligence or otherwise) arising in any way out of 40 // the use of this software, even if advised of the possibility of such damage. 41 // 42 //M*/ 43 44 #ifndef OPENCV_CALIB3D_HPP 45 #define OPENCV_CALIB3D_HPP 46 47 #include "opencv2/core.hpp" 48 #include "opencv2/features2d.hpp" 49 #include "opencv2/core/affine.hpp" 50 51 /** 52 @defgroup calib3d Camera Calibration and 3D Reconstruction 53 54 The functions in this section use a so-called pinhole camera model. The view of a scene 55 is obtained by projecting a scene's 3D point \f$P_w\f$ into the image plane using a perspective 56 transformation which forms the corresponding pixel \f$p\f$. Both \f$P_w\f$ and \f$p\f$ are 57 represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will 58 find a brief introduction to projective geometry, homogeneous vectors and homogeneous 59 transformations at the end of this section's introduction. For more succinct notation, we often drop 60 the 'homogeneous' and say vector instead of homogeneous vector. 61 62 The distortion-free projective transformation given by a pinhole camera model is shown below. 63 64 \f[s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w,\f] 65 66 where \f$P_w\f$ is a 3D point expressed with respect to the world coordinate system, 67 \f$p\f$ is a 2D pixel in the image plane, \f$A\f$ is the camera intrinsic matrix, 68 \f$R\f$ and \f$t\f$ are the rotation and translation that describe the change of coordinates from 69 world to camera coordinate systems (or camera frame) and \f$s\f$ is the projective transformation's 70 arbitrary scaling and not part of the camera model. 71 72 The camera intrinsic matrix \f$A\f$ (notation used as in @cite Zhang2000 and also generally notated 73 as \f$K\f$) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e. 74 75 \f[p = A P_c.\f] 76 77 The camera intrinsic matrix \f$A\f$ is composed of the focal lengths \f$f_x\f$ and \f$f_y\f$, which are 78 expressed in pixel units, and the principal point \f$(c_x, c_y)\f$, that is usually close to the 79 image center: 80 81 \f[A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1},\f] 82 83 and thus 84 85 \f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \vecthree{X_c}{Y_c}{Z_c}.\f] 86 87 The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can 88 be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the 89 camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided, 90 respectively) by the same factor. 91 92 The joint rotation-translation matrix \f$[R|t]\f$ is the matrix product of a projective 93 transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points 94 represented in camera coordinates to 2D points in the image plane and represented in normalized 95 camera coordinates \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$: 96 97 \f[Z_c \begin{bmatrix} 98 x' \\ 99 y' \\ 100 1 101 \end{bmatrix} = \begin{bmatrix} 102 1 & 0 & 0 & 0 \\ 103 0 & 1 & 0 & 0 \\ 104 0 & 0 & 1 & 0 105 \end{bmatrix} 106 \begin{bmatrix} 107 X_c \\ 108 Y_c \\ 109 Z_c \\ 110 1 111 \end{bmatrix}.\f] 112 113 The homogeneous transformation is encoded by the extrinsic parameters \f$R\f$ and \f$t\f$ and 114 represents the change of basis from world coordinate system \f$w\f$ to the camera coordinate sytem 115 \f$c\f$. Thus, given the representation of the point \f$P\f$ in world coordinates, \f$P_w\f$, we 116 obtain \f$P\f$'s representation in the camera coordinate system, \f$P_c\f$, by 117 118 \f[P_c = \begin{bmatrix} 119 R & t \\ 120 0 & 1 121 \end{bmatrix} P_w,\f] 122 123 This homogeneous transformation is composed out of \f$R\f$, a 3-by-3 rotation matrix, and \f$t\f$, a 124 3-by-1 translation vector: 125 126 \f[\begin{bmatrix} 127 R & t \\ 128 0 & 1 129 \end{bmatrix} = \begin{bmatrix} 130 r_{11} & r_{12} & r_{13} & t_x \\ 131 r_{21} & r_{22} & r_{23} & t_y \\ 132 r_{31} & r_{32} & r_{33} & t_z \\ 133 0 & 0 & 0 & 1 134 \end{bmatrix}, 135 \f] 136 137 and therefore 138 139 \f[\begin{bmatrix} 140 X_c \\ 141 Y_c \\ 142 Z_c \\ 143 1 144 \end{bmatrix} = \begin{bmatrix} 145 r_{11} & r_{12} & r_{13} & t_x \\ 146 r_{21} & r_{22} & r_{23} & t_y \\ 147 r_{31} & r_{32} & r_{33} & t_z \\ 148 0 & 0 & 0 & 1 149 \end{bmatrix} 150 \begin{bmatrix} 151 X_w \\ 152 Y_w \\ 153 Z_w \\ 154 1 155 \end{bmatrix}.\f] 156 157 Combining the projective transformation and the homogeneous transformation, we obtain the projective 158 transformation that maps 3D points in world coordinates into 2D points in the image plane and in 159 normalized camera coordinates: 160 161 \f[Z_c \begin{bmatrix} 162 x' \\ 163 y' \\ 164 1 165 \end{bmatrix} = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix} 166 X_w \\ 167 Y_w \\ 168 Z_w \\ 169 1 170 \end{bmatrix} = \begin{bmatrix} 171 r_{11} & r_{12} & r_{13} & t_x \\ 172 r_{21} & r_{22} & r_{23} & t_y \\ 173 r_{31} & r_{32} & r_{33} & t_z 174 \end{bmatrix} 175 \begin{bmatrix} 176 X_w \\ 177 Y_w \\ 178 Z_w \\ 179 1 180 \end{bmatrix},\f] 181 182 with \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$. Putting the equations for instrincs and extrinsics together, we can write out 183 \f$s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w\f$ as 184 185 \f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} 186 \begin{bmatrix} 187 r_{11} & r_{12} & r_{13} & t_x \\ 188 r_{21} & r_{22} & r_{23} & t_y \\ 189 r_{31} & r_{32} & r_{33} & t_z 190 \end{bmatrix} 191 \begin{bmatrix} 192 X_w \\ 193 Y_w \\ 194 Z_w \\ 195 1 196 \end{bmatrix}.\f] 197 198 If \f$Z_c \ne 0\f$, the transformation above is equivalent to the following, 199 200 \f[\begin{bmatrix} 201 u \\ 202 v 203 \end{bmatrix} = \begin{bmatrix} 204 f_x X_c/Z_c + c_x \\ 205 f_y Y_c/Z_c + c_y 206 \end{bmatrix}\f] 207 208 with 209 210 \f[\vecthree{X_c}{Y_c}{Z_c} = \begin{bmatrix} 211 R|t 212 \end{bmatrix} \begin{bmatrix} 213 X_w \\ 214 Y_w \\ 215 Z_w \\ 216 1 217 \end{bmatrix}.\f] 218 219 The following figure illustrates the pinhole camera model. 220 221  222 223 Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion. 224 So, the above model is extended as: 225 226 \f[\begin{bmatrix} 227 u \\ 228 v 229 \end{bmatrix} = \begin{bmatrix} 230 f_x x'' + c_x \\ 231 f_y y'' + c_y 232 \end{bmatrix}\f] 233 234 where 235 236 \f[\begin{bmatrix} 237 x'' \\ 238 y'' 239 \end{bmatrix} = \begin{bmatrix} 240 x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ 241 y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ 242 \end{bmatrix}\f] 243 244 with 245 246 \f[r^2 = x'^2 + y'^2\f] 247 248 and 249 250 \f[\begin{bmatrix} 251 x'\\ 252 y' 253 \end{bmatrix} = \begin{bmatrix} 254 X_c/Z_c \\ 255 Y_c/Z_c 256 \end{bmatrix},\f] 257 258 if \f$Z_c \ne 0\f$. 259 260 The distortion parameters are the radial coefficients \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ 261 ,\f$p_1\f$ and \f$p_2\f$ are the tangential distortion coefficients, and \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, 262 are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV. 263 264 The next figures show two common types of radial distortion: barrel distortion 265 (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing) 266 and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing). 267 Radial distortion is always monotonic for real lenses, 268 and if the estimator produces a non-monotonic result, 269 this should be considered a calibration failure. 270 More generally, radial distortion must be monotonic and the distortion function must be bijective. 271 A failed estimation result may look deceptively good near the image center 272 but will work poorly in e.g. AR/SFM applications. 273 The optimization method used in OpenCV camera calibration does not include these constraints as 274 the framework does not support the required integer programming and polynomial inequalities. 275 See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information. 276 277  278  279 280 In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the 281 camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or 282 triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and 283 \f$y''\f$. This distortion can be modeled in the following way, see e.g. @cite Louhichi07. 284 285 \f[\begin{bmatrix} 286 u \\ 287 v 288 \end{bmatrix} = \begin{bmatrix} 289 f_x x''' + c_x \\ 290 f_y y''' + c_y 291 \end{bmatrix},\f] 292 293 where 294 295 \f[s\vecthree{x'''}{y'''}{1} = 296 \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)} 297 {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} 298 {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\f] 299 300 and the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter 301 \f$\tau_x\f$ and \f$\tau_y\f$, respectively, 302 303 \f[ 304 R(\tau_x, \tau_y) = 305 \vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} 306 \vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = 307 \vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} 308 {0}{\cos(\tau_x)}{\sin(\tau_x)} 309 {\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. 310 \f] 311 312 In the functions below the coefficients are passed or returned as 313 314 \f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f] 315 316 vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion 317 coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera 318 parameters. And they remain the same regardless of the captured image resolution. If, for example, a 319 camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion 320 coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, 321 \f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately. 322 323 The functions below use the above model to do the following: 324 325 - Project 3D points to the image plane given intrinsic and extrinsic parameters. 326 - Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their 327 projections. 328 - Estimate intrinsic and extrinsic camera parameters from several views of a known calibration 329 pattern (every view is described by several 3D-2D point correspondences). 330 - Estimate the relative position and orientation of the stereo camera "heads" and compute the 331 *rectification* transformation that makes the camera optical axes parallel. 332 333 <B> Homogeneous Coordinates </B><br> 334 Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use 335 allows to represent points at infinity by finite coordinates and simplifies formulas when compared 336 to the cartesian counterparts, e.g. they have the advantage that affine transformations can be 337 expressed as linear homogeneous transformation. 338 339 One obtains the homogeneous vector \f$P_h\f$ by appending a 1 along an n-dimensional cartesian 340 vector \f$P\f$ e.g. for a 3D cartesian vector the mapping \f$P \rightarrow P_h\f$ is: 341 342 \f[\begin{bmatrix} 343 X \\ 344 Y \\ 345 Z 346 \end{bmatrix} \rightarrow \begin{bmatrix} 347 X \\ 348 Y \\ 349 Z \\ 350 1 351 \end{bmatrix}.\f] 352 353 For the inverse mapping \f$P_h \rightarrow P\f$, one divides all elements of the homogeneous vector 354 by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by: 355 356 \f[\begin{bmatrix} 357 X \\ 358 Y \\ 359 W 360 \end{bmatrix} \rightarrow \begin{bmatrix} 361 X / W \\ 362 Y / W 363 \end{bmatrix},\f] 364 365 if \f$W \ne 0\f$. 366 367 Due to this mapping, all multiples \f$k P_h\f$, for \f$k \ne 0\f$, of a homogeneous point represent 368 the same point \f$P_h\f$. An intuitive understanding of this property is that under a projective 369 transformation, all multiples of \f$P_h\f$ are mapped to the same point. This is the physical 370 observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are 371 projected to the same image point, e.g. all points along the red ray in the image of the pinhole 372 camera model above would be mapped to the same image coordinate. This property is also the source 373 for the scale ambiguity s in the equation of the pinhole camera model. 374 375 As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by 376 \f$R\f$ and \f$t\f$ as a linear transformation, e.g. for the change of basis from coordinate system 377 0 to coordinate system 1 becomes: 378 379 \f[P_1 = R P_0 + t \rightarrow P_{h_1} = \begin{bmatrix} 380 R & t \\ 381 0 & 1 382 \end{bmatrix} P_{h_0}.\f] 383 384 @note 385 - Many functions in this module take a camera intrinsic matrix as an input parameter. Although all 386 functions assume the same structure of this parameter, they may name it differently. The 387 parameter's description, however, will be clear in that a camera intrinsic matrix with the structure 388 shown above is required. 389 - A calibration sample for 3 cameras in a horizontal position can be found at 390 opencv_source_code/samples/cpp/3calibration.cpp 391 - A calibration sample based on a sequence of images can be found at 392 opencv_source_code/samples/cpp/calibration.cpp 393 - A calibration sample in order to do 3D reconstruction can be found at 394 opencv_source_code/samples/cpp/build3dmodel.cpp 395 - A calibration example on stereo calibration can be found at 396 opencv_source_code/samples/cpp/stereo_calib.cpp 397 - A calibration example on stereo matching can be found at 398 opencv_source_code/samples/cpp/stereo_match.cpp 399 - (Python) A camera calibration sample can be found at 400 opencv_source_code/samples/python/calibrate.py 401 402 @{ 403 @defgroup calib3d_fisheye Fisheye camera model 404 405 Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the 406 matrix X) The coordinate vector of P in the camera reference frame is: 407 408 \f[Xc = R X + T\f] 409 410 where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y 411 and z the 3 coordinates of Xc: 412 413 \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f] 414 415 The pinhole projection coordinates of P is [a; b] where 416 417 \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f] 418 419 Fisheye distortion: 420 421 \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f] 422 423 The distorted point coordinates are [x'; y'] where 424 425 \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f] 426 427 Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where: 428 429 \f[u = f_x (x' + \alpha y') + c_x \\ 430 v = f_y y' + c_y\f] 431 432 @defgroup calib3d_c C API 433 434 @} 435 */ 436 437 namespace cv 438 { 439 440 //! @addtogroup calib3d 441 //! @{ 442 443 //! type of the robust estimation algorithm 444 enum { LMEDS = 4, //!< least-median of squares algorithm 445 RANSAC = 8, //!< RANSAC algorithm 446 RHO = 16, //!< RHO algorithm 447 USAC_DEFAULT = 32, //!< USAC algorithm, default settings 448 USAC_PARALLEL = 33, //!< USAC, parallel version 449 USAC_FM_8PTS = 34, //!< USAC, fundamental matrix 8 points 450 USAC_FAST = 35, //!< USAC, fast settings 451 USAC_ACCURATE = 36, //!< USAC, accurate settings 452 USAC_PROSAC = 37, //!< USAC, sorted points, runs PROSAC 453 USAC_MAGSAC = 38 //!< USAC, runs MAGSAC++ 454 }; 455 456 enum SolvePnPMethod { 457 SOLVEPNP_ITERATIVE = 0, 458 SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp 459 SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete 460 SOLVEPNP_DLS = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n 461 //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct 462 SOLVEPNP_UPNP = 4, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n 463 //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive 464 SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17 465 SOLVEPNP_IPPE = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n 466 //!< Object points must be coplanar. 467 SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n 468 //!< This is a special case suitable for marker pose estimation.\n 469 //!< 4 coplanar object points must be defined in the following order: 470 //!< - point 0: [-squareLength / 2, squareLength / 2, 0] 471 //!< - point 1: [ squareLength / 2, squareLength / 2, 0] 472 //!< - point 2: [ squareLength / 2, -squareLength / 2, 0] 473 //!< - point 3: [-squareLength / 2, -squareLength / 2, 0] 474 SOLVEPNP_SQPNP = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis20 475 #ifndef CV_DOXYGEN 476 SOLVEPNP_MAX_COUNT //!< Used for count 477 #endif 478 }; 479 480 enum { CALIB_CB_ADAPTIVE_THRESH = 1, 481 CALIB_CB_NORMALIZE_IMAGE = 2, 482 CALIB_CB_FILTER_QUADS = 4, 483 CALIB_CB_FAST_CHECK = 8, 484 CALIB_CB_EXHAUSTIVE = 16, 485 CALIB_CB_ACCURACY = 32, 486 CALIB_CB_LARGER = 64, 487 CALIB_CB_MARKER = 128 488 }; 489 490 enum { CALIB_CB_SYMMETRIC_GRID = 1, 491 CALIB_CB_ASYMMETRIC_GRID = 2, 492 CALIB_CB_CLUSTERING = 4 493 }; 494 495 enum { CALIB_NINTRINSIC = 18, 496 CALIB_USE_INTRINSIC_GUESS = 0x00001, 497 CALIB_FIX_ASPECT_RATIO = 0x00002, 498 CALIB_FIX_PRINCIPAL_POINT = 0x00004, 499 CALIB_ZERO_TANGENT_DIST = 0x00008, 500 CALIB_FIX_FOCAL_LENGTH = 0x00010, 501 CALIB_FIX_K1 = 0x00020, 502 CALIB_FIX_K2 = 0x00040, 503 CALIB_FIX_K3 = 0x00080, 504 CALIB_FIX_K4 = 0x00800, 505 CALIB_FIX_K5 = 0x01000, 506 CALIB_FIX_K6 = 0x02000, 507 CALIB_RATIONAL_MODEL = 0x04000, 508 CALIB_THIN_PRISM_MODEL = 0x08000, 509 CALIB_FIX_S1_S2_S3_S4 = 0x10000, 510 CALIB_TILTED_MODEL = 0x40000, 511 CALIB_FIX_TAUX_TAUY = 0x80000, 512 CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise 513 CALIB_FIX_TANGENT_DIST = 0x200000, 514 // only for stereo 515 CALIB_FIX_INTRINSIC = 0x00100, 516 CALIB_SAME_FOCAL_LENGTH = 0x00200, 517 // for stereo rectification 518 CALIB_ZERO_DISPARITY = 0x00400, 519 CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise 520 CALIB_USE_EXTRINSIC_GUESS = (1 << 22) //!< for stereoCalibrate 521 }; 522 523 //! the algorithm for finding fundamental matrix 524 enum { FM_7POINT = 1, //!< 7-point algorithm 525 FM_8POINT = 2, //!< 8-point algorithm 526 FM_LMEDS = 4, //!< least-median algorithm. 7-point algorithm is used. 527 FM_RANSAC = 8 //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used. 528 }; 529 530 enum HandEyeCalibrationMethod 531 { 532 CALIB_HAND_EYE_TSAI = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89 533 CALIB_HAND_EYE_PARK = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94 534 CALIB_HAND_EYE_HORAUD = 2, //!< Hand-eye Calibration @cite Horaud95 535 CALIB_HAND_EYE_ANDREFF = 3, //!< On-line Hand-Eye Calibration @cite Andreff99 536 CALIB_HAND_EYE_DANIILIDIS = 4 //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98 537 }; 538 539 enum RobotWorldHandEyeCalibrationMethod 540 { 541 CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0, //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR 542 CALIB_ROBOT_WORLD_HAND_EYE_LI = 1 //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA 543 }; 544 545 enum SamplingMethod { SAMPLING_UNIFORM, SAMPLING_PROGRESSIVE_NAPSAC, SAMPLING_NAPSAC, 546 SAMPLING_PROSAC }; 547 enum LocalOptimMethod {LOCAL_OPTIM_NULL, LOCAL_OPTIM_INNER_LO, LOCAL_OPTIM_INNER_AND_ITER_LO, 548 LOCAL_OPTIM_GC, LOCAL_OPTIM_SIGMA}; 549 enum ScoreMethod {SCORE_METHOD_RANSAC, SCORE_METHOD_MSAC, SCORE_METHOD_MAGSAC, SCORE_METHOD_LMEDS}; 550 enum NeighborSearchMethod { NEIGH_FLANN_KNN, NEIGH_GRID, NEIGH_FLANN_RADIUS }; 551 552 struct CV_EXPORTS_W_SIMPLE UsacParams 553 { // in alphabetical order 554 CV_WRAP UsacParams(); 555 CV_PROP_RW double confidence; 556 CV_PROP_RW bool isParallel; 557 CV_PROP_RW int loIterations; 558 CV_PROP_RW LocalOptimMethod loMethod; 559 CV_PROP_RW int loSampleSize; 560 CV_PROP_RW int maxIterations; 561 CV_PROP_RW NeighborSearchMethod neighborsSearch; 562 CV_PROP_RW int randomGeneratorState; 563 CV_PROP_RW SamplingMethod sampler; 564 CV_PROP_RW ScoreMethod score; 565 CV_PROP_RW double threshold; 566 }; 567 568 /** @brief Converts a rotation matrix to a rotation vector or vice versa. 569 570 @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). 571 @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. 572 @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial 573 derivatives of the output array components with respect to the input array components. 574 575 \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta} ) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f] 576 577 Inverse transformation can be also done easily, since 578 579 \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f] 580 581 A rotation vector is a convenient and most compact representation of a rotation matrix (since any 582 rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry 583 optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP . 584 585 @note More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate 586 can be found in: 587 - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF 588 589 @note Useful information on SE(3) and Lie Groups can be found in: 590 - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial 591 - Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17 592 - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML 593 */ 594 CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() ); 595 596 597 598 /** Levenberg-Marquardt solver. Starting with the specified vector of parameters it 599 optimizes the target vector criteria "err" 600 (finds local minima of each target vector component absolute value). 601 602 When needed, it calls user-provided callback. 603 */ 604 class CV_EXPORTS LMSolver : public Algorithm 605 { 606 public: 607 class CV_EXPORTS Callback 608 { 609 public: 610 virtual ~Callback() {} 611 /** 612 computes error and Jacobian for the specified vector of parameters 613 614 @param param the current vector of parameters 615 @param err output vector of errors: err_i = actual_f_i - ideal_f_i 616 @param J output Jacobian: J_ij = d(err_i)/d(param_j) 617 618 when J=noArray(), it means that it does not need to be computed. 619 Dimensionality of error vector and param vector can be different. 620 The callback should explicitly allocate (with "create" method) each output array 621 (unless it's noArray()). 622 */ 623 virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0; 624 }; 625 626 /** 627 Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point. 628 The final vector of parameters (whether the algorithm converged or not) is stored at the same 629 vector. The method returns the number of iterations used. If it's equal to the previously specified 630 maxIters, there is a big chance the algorithm did not converge. 631 632 @param param initial/final vector of parameters. 633 634 Note that the dimensionality of parameter space is defined by the size of param vector, 635 and the dimensionality of optimized criteria is defined by the size of err vector 636 computed by the callback. 637 */ 638 virtual int run(InputOutputArray param) const = 0; 639 640 /** 641 Sets the maximum number of iterations 642 @param maxIters the number of iterations 643 */ 644 virtual void setMaxIters(int maxIters) = 0; 645 /** 646 Retrieves the current maximum number of iterations 647 */ 648 virtual int getMaxIters() const = 0; 649 650 /** 651 Creates Levenberg-Marquard solver 652 653 @param cb callback 654 @param maxIters maximum number of iterations that can be further 655 modified using setMaxIters() method. 656 */ 657 static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters); 658 static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps); 659 }; 660 661 662 663 /** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp 664 An example program about pose estimation from coplanar points 665 666 Check @ref tutorial_homography "the corresponding tutorial" for more details 667 */ 668 669 /** @brief Finds a perspective transformation between two planes. 670 671 @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 672 or vector\<Point2f\> . 673 @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or 674 a vector\<Point2f\> . 675 @param method Method used to compute a homography matrix. The following methods are possible: 676 - **0** - a regular method using all the points, i.e., the least squares method 677 - @ref RANSAC - RANSAC-based robust method 678 - @ref LMEDS - Least-Median robust method 679 - @ref RHO - PROSAC-based robust method 680 @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier 681 (used in the RANSAC and RHO methods only). That is, if 682 \f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f] 683 then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels, 684 it usually makes sense to set this parameter somewhere in the range of 1 to 10. 685 @param mask Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input 686 mask values are ignored. 687 @param maxIters The maximum number of RANSAC iterations. 688 @param confidence Confidence level, between 0 and 1. 689 690 The function finds and returns the perspective transformation \f$H\f$ between the source and the 691 destination planes: 692 693 \f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] 694 695 so that the back-projection error 696 697 \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f] 698 699 is minimized. If the parameter method is set to the default value 0, the function uses all the point 700 pairs to compute an initial homography estimate with a simple least-squares scheme. 701 702 However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective 703 transformation (that is, there are some outliers), this initial estimate will be poor. In this case, 704 you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different 705 random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix 706 using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the 707 computed homography (which is the number of inliers for RANSAC or the least median re-projection error for 708 LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and 709 the mask of inliers/outliers. 710 711 Regardless of the method, robust or not, the computed homography matrix is refined further (using 712 inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the 713 re-projection error even more. 714 715 The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to 716 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works 717 correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the 718 noise is rather small, use the default method (method=0). 719 720 The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is 721 determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix 722 cannot be estimated, an empty one will be returned. 723 724 @sa 725 getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, 726 perspectiveTransform 727 */ 728 CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints, 729 int method = 0, double ransacReprojThreshold = 3, 730 OutputArray mask=noArray(), const int maxIters = 2000, 731 const double confidence = 0.995); 732 733 /** @overload */ 734 CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints, 735 OutputArray mask, int method = 0, double ransacReprojThreshold = 3 ); 736 737 738 CV_EXPORTS_W Mat findHomography(InputArray srcPoints, InputArray dstPoints, OutputArray mask, 739 const UsacParams ¶ms); 740 741 /** @brief Computes an RQ decomposition of 3x3 matrices. 742 743 @param src 3x3 input matrix. 744 @param mtxR Output 3x3 upper-triangular matrix. 745 @param mtxQ Output 3x3 orthogonal matrix. 746 @param Qx Optional output 3x3 rotation matrix around x-axis. 747 @param Qy Optional output 3x3 rotation matrix around y-axis. 748 @param Qz Optional output 3x3 rotation matrix around z-axis. 749 750 The function computes a RQ decomposition using the given rotations. This function is used in 751 #decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera 752 and a rotation matrix. 753 754 It optionally returns three rotation matrices, one for each axis, and the three Euler angles in 755 degrees (as the return value) that could be used in OpenGL. Note, there is always more than one 756 sequence of rotations about the three principal axes that results in the same orientation of an 757 object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles 758 are only one of the possible solutions. 759 */ 760 CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ, 761 OutputArray Qx = noArray(), 762 OutputArray Qy = noArray(), 763 OutputArray Qz = noArray()); 764 765 /** @brief Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix. 766 767 @param projMatrix 3x4 input projection matrix P. 768 @param cameraMatrix Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$. 769 @param rotMatrix Output 3x3 external rotation matrix R. 770 @param transVect Output 4x1 translation vector T. 771 @param rotMatrixX Optional 3x3 rotation matrix around x-axis. 772 @param rotMatrixY Optional 3x3 rotation matrix around y-axis. 773 @param rotMatrixZ Optional 3x3 rotation matrix around z-axis. 774 @param eulerAngles Optional three-element vector containing three Euler angles of rotation in 775 degrees. 776 777 The function computes a decomposition of a projection matrix into a calibration and a rotation 778 matrix and the position of a camera. 779 780 It optionally returns three rotation matrices, one for each axis, and three Euler angles that could 781 be used in OpenGL. Note, there is always more than one sequence of rotations about the three 782 principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned 783 tree rotation matrices and corresponding three Euler angles are only one of the possible solutions. 784 785 The function is based on RQDecomp3x3 . 786 */ 787 CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix, 788 OutputArray rotMatrix, OutputArray transVect, 789 OutputArray rotMatrixX = noArray(), 790 OutputArray rotMatrixY = noArray(), 791 OutputArray rotMatrixZ = noArray(), 792 OutputArray eulerAngles =noArray() ); 793 794 /** @brief Computes partial derivatives of the matrix product for each multiplied matrix. 795 796 @param A First multiplied matrix. 797 @param B Second multiplied matrix. 798 @param dABdA First output derivative matrix d(A\*B)/dA of size 799 \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ . 800 @param dABdB Second output derivative matrix d(A\*B)/dB of size 801 \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ . 802 803 The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to 804 the elements of each of the two input matrices. The function is used to compute the Jacobian 805 matrices in #stereoCalibrate but can also be used in any other similar optimization function. 806 */ 807 CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB ); 808 809 /** @brief Combines two rotation-and-shift transformations. 810 811 @param rvec1 First rotation vector. 812 @param tvec1 First translation vector. 813 @param rvec2 Second rotation vector. 814 @param tvec2 Second translation vector. 815 @param rvec3 Output rotation vector of the superposition. 816 @param tvec3 Output translation vector of the superposition. 817 @param dr3dr1 Optional output derivative of rvec3 with regard to rvec1 818 @param dr3dt1 Optional output derivative of rvec3 with regard to tvec1 819 @param dr3dr2 Optional output derivative of rvec3 with regard to rvec2 820 @param dr3dt2 Optional output derivative of rvec3 with regard to tvec2 821 @param dt3dr1 Optional output derivative of tvec3 with regard to rvec1 822 @param dt3dt1 Optional output derivative of tvec3 with regard to tvec1 823 @param dt3dr2 Optional output derivative of tvec3 with regard to rvec2 824 @param dt3dt2 Optional output derivative of tvec3 with regard to tvec2 825 826 The functions compute: 827 828 \f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f] 829 830 where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and 831 \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details. 832 833 Also, the functions can compute the derivatives of the output vectors with regards to the input 834 vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in 835 your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a 836 function that contains a matrix multiplication. 837 */ 838 CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1, 839 InputArray rvec2, InputArray tvec2, 840 OutputArray rvec3, OutputArray tvec3, 841 OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(), 842 OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(), 843 OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(), 844 OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() ); 845 846 /** @brief Projects 3D points to an image plane. 847 848 @param objectPoints Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3 849 1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view. 850 @param rvec The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of 851 basis from world to camera coordinate system, see @ref calibrateCamera for details. 852 @param tvec The translation vector, see parameter description above. 853 @param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . 854 @param distCoeffs Input vector of distortion coefficients 855 \f$\distcoeffs\f$ . If the vector is empty, the zero distortion coefficients are assumed. 856 @param imagePoints Output array of image points, 1xN/Nx1 2-channel, or 857 vector\<Point2f\> . 858 @param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image 859 points with respect to components of the rotation vector, translation vector, focal lengths, 860 coordinates of the principal point and the distortion coefficients. In the old interface different 861 components of the jacobian are returned via different output parameters. 862 @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the 863 function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the 864 jacobian matrix. 865 866 The function computes the 2D projections of 3D points to the image plane, given intrinsic and 867 extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial 868 derivatives of image points coordinates (as functions of all the input parameters) with respect to 869 the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global 870 optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself 871 can also be used to compute a re-projection error, given the current intrinsic and extrinsic 872 parameters. 873 874 @note By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix, 875 or by passing zero distortion coefficients, one can get various useful partial cases of the 876 function. This means, one can compute the distorted coordinates for a sparse set of points or apply 877 a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup. 878 */ 879 CV_EXPORTS_W void projectPoints( InputArray objectPoints, 880 InputArray rvec, InputArray tvec, 881 InputArray cameraMatrix, InputArray distCoeffs, 882 OutputArray imagePoints, 883 OutputArray jacobian = noArray(), 884 double aspectRatio = 0 ); 885 886 /** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp 887 An example program about homography from the camera displacement 888 889 Check @ref tutorial_homography "the corresponding tutorial" for more details 890 */ 891 892 /** @brief Finds an object pose from 3D-2D point correspondences. 893 This function returns the rotation and the translation vectors that transform a 3D point expressed in the object 894 coordinate frame to the camera coordinate frame, using different methods: 895 - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution. 896 - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. 897 - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation. 898 Number of input points must be 4. Object points must be defined in the following order: 899 - point 0: [-squareLength / 2, squareLength / 2, 0] 900 - point 1: [ squareLength / 2, squareLength / 2, 0] 901 - point 2: [ squareLength / 2, -squareLength / 2, 0] 902 - point 3: [-squareLength / 2, -squareLength / 2, 0] 903 - for all the other flags, number of input points must be >= 4 and object points can be in any configuration. 904 905 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 906 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here. 907 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, 908 where N is the number of points. vector\<Point2d\> can be also passed here. 909 @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . 910 @param distCoeffs Input vector of distortion coefficients 911 \f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are 912 assumed. 913 @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from 914 the model coordinate system to the camera coordinate system. 915 @param tvec Output translation vector. 916 @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses 917 the provided rvec and tvec values as initial approximations of the rotation and translation 918 vectors, respectively, and further optimizes them. 919 @param flags Method for solving a PnP problem: 920 - @ref SOLVEPNP_ITERATIVE Iterative method is based on a Levenberg-Marquardt optimization. In 921 this case the function finds such a pose that minimizes reprojection error, that is the sum 922 of squared distances between the observed projections imagePoints and the projected (using 923 @ref projectPoints ) objectPoints . 924 - @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang 925 "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete). 926 In this case the function requires exactly four object and image points. 927 - @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke, S. Roumeliotis 928 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). 929 In this case the function requires exactly four object and image points. 930 - @ref SOLVEPNP_EPNP Method has been introduced by F. Moreno-Noguer, V. Lepetit and P. Fua in the 931 paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp). 932 - @ref SOLVEPNP_DLS **Broken implementation. Using this flag will fallback to EPnP.** \n 933 Method is based on the paper of J. Hesch and S. Roumeliotis. 934 "A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct). 935 - @ref SOLVEPNP_UPNP **Broken implementation. Using this flag will fallback to EPnP.** \n 936 Method is based on the paper of A. Penate-Sanchez, J. Andrade-Cetto, 937 F. Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length 938 Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$ 939 assuming that both have the same value. Then the cameraMatrix is updated with the estimated 940 focal length. 941 - @ref SOLVEPNP_IPPE Method is based on the paper of T. Collins and A. Bartoli. 942 "Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method requires coplanar object points. 943 - @ref SOLVEPNP_IPPE_SQUARE Method is based on the paper of Toby Collins and Adrien Bartoli. 944 "Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method is suitable for marker pose estimation. 945 It requires 4 coplanar object points defined in the following order: 946 - point 0: [-squareLength / 2, squareLength / 2, 0] 947 - point 1: [ squareLength / 2, squareLength / 2, 0] 948 - point 2: [ squareLength / 2, -squareLength / 2, 0] 949 - point 3: [-squareLength / 2, -squareLength / 2, 0] 950 - @ref SOLVEPNP_SQPNP Method is based on the paper "A Consistently Fast and Globally Optimal Solution to the 951 Perspective-n-Point Problem" by G. Terzakis and M.Lourakis (@cite Terzakis20). It requires 3 or more points. 952 953 954 The function estimates the object pose given a set of object points, their corresponding image 955 projections, as well as the camera intrinsic matrix and the distortion coefficients, see the figure below 956 (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward 957 and the Z-axis forward). 958 959  960 961 Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$ 962 using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$: 963 964 \f[ 965 \begin{align*} 966 \begin{bmatrix} 967 u \\ 968 v \\ 969 1 970 \end{bmatrix} &= 971 \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{T}_w 972 \begin{bmatrix} 973 X_{w} \\ 974 Y_{w} \\ 975 Z_{w} \\ 976 1 977 \end{bmatrix} \\ 978 \begin{bmatrix} 979 u \\ 980 v \\ 981 1 982 \end{bmatrix} &= 983 \begin{bmatrix} 984 f_x & 0 & c_x \\ 985 0 & f_y & c_y \\ 986 0 & 0 & 1 987 \end{bmatrix} 988 \begin{bmatrix} 989 1 & 0 & 0 & 0 \\ 990 0 & 1 & 0 & 0 \\ 991 0 & 0 & 1 & 0 992 \end{bmatrix} 993 \begin{bmatrix} 994 r_{11} & r_{12} & r_{13} & t_x \\ 995 r_{21} & r_{22} & r_{23} & t_y \\ 996 r_{31} & r_{32} & r_{33} & t_z \\ 997 0 & 0 & 0 & 1 998 \end{bmatrix} 999 \begin{bmatrix} 1000 X_{w} \\ 1001 Y_{w} \\ 1002 Z_{w} \\ 1003 1 1004 \end{bmatrix} 1005 \end{align*} 1006 \f] 1007 1008 The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming 1009 a 3D point expressed in the world frame into the camera frame: 1010 1011 \f[ 1012 \begin{align*} 1013 \begin{bmatrix} 1014 X_c \\ 1015 Y_c \\ 1016 Z_c \\ 1017 1 1018 \end{bmatrix} &= 1019 \hspace{0.2em} ^{c}\bf{T}_w 1020 \begin{bmatrix} 1021 X_{w} \\ 1022 Y_{w} \\ 1023 Z_{w} \\ 1024 1 1025 \end{bmatrix} \\ 1026 \begin{bmatrix} 1027 X_c \\ 1028 Y_c \\ 1029 Z_c \\ 1030 1 1031 \end{bmatrix} &= 1032 \begin{bmatrix} 1033 r_{11} & r_{12} & r_{13} & t_x \\ 1034 r_{21} & r_{22} & r_{23} & t_y \\ 1035 r_{31} & r_{32} & r_{33} & t_z \\ 1036 0 & 0 & 0 & 1 1037 \end{bmatrix} 1038 \begin{bmatrix} 1039 X_{w} \\ 1040 Y_{w} \\ 1041 Z_{w} \\ 1042 1 1043 \end{bmatrix} 1044 \end{align*} 1045 \f] 1046 1047 @note 1048 - An example of how to use solvePnP for planar augmented reality can be found at 1049 opencv_source_code/samples/python/plane_ar.py 1050 - If you are using Python: 1051 - Numpy array slices won't work as input because solvePnP requires contiguous 1052 arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of 1053 modules/calib3d/src/solvepnp.cpp version 2.4.9) 1054 - The P3P algorithm requires image points to be in an array of shape (N,1,2) due 1055 to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) 1056 which requires 2-channel information. 1057 - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of 1058 it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = 1059 np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) 1060 - The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are 1061 unstable and sometimes give completely wrong results. If you pass one of these two 1062 flags, @ref SOLVEPNP_EPNP method will be used instead. 1063 - The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P 1064 methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions 1065 of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error). 1066 - With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points 1067 are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the 1068 global solution to converge. 1069 - With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar. 1070 - With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation. 1071 Number of input points must be 4. Object points must be defined in the following order: 1072 - point 0: [-squareLength / 2, squareLength / 2, 0] 1073 - point 1: [ squareLength / 2, squareLength / 2, 0] 1074 - point 2: [ squareLength / 2, -squareLength / 2, 0] 1075 - point 3: [-squareLength / 2, -squareLength / 2, 0] 1076 - With @ref SOLVEPNP_SQPNP input points must be >= 3 1077 */ 1078 CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints, 1079 InputArray cameraMatrix, InputArray distCoeffs, 1080 OutputArray rvec, OutputArray tvec, 1081 bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE ); 1082 1083 /** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. 1084 1085 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1086 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here. 1087 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, 1088 where N is the number of points. vector\<Point2d\> can be also passed here. 1089 @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . 1090 @param distCoeffs Input vector of distortion coefficients 1091 \f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are 1092 assumed. 1093 @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from 1094 the model coordinate system to the camera coordinate system. 1095 @param tvec Output translation vector. 1096 @param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses 1097 the provided rvec and tvec values as initial approximations of the rotation and translation 1098 vectors, respectively, and further optimizes them. 1099 @param iterationsCount Number of iterations. 1100 @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value 1101 is the maximum allowed distance between the observed and computed point projections to consider it 1102 an inlier. 1103 @param confidence The probability that the algorithm produces a useful result. 1104 @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints . 1105 @param flags Method for solving a PnP problem (see @ref solvePnP ). 1106 1107 The function estimates an object pose given a set of object points, their corresponding image 1108 projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such 1109 a pose that minimizes reprojection error, that is, the sum of squared distances between the observed 1110 projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC 1111 makes the function resistant to outliers. 1112 1113 @note 1114 - An example of how to use solvePNPRansac for object detection can be found at 1115 opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/ 1116 - The default method used to estimate the camera pose for the Minimal Sample Sets step 1117 is #SOLVEPNP_EPNP. Exceptions are: 1118 - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used. 1119 - if the number of input points is equal to 4, #SOLVEPNP_P3P is used. 1120 - The method used to estimate the camera pose using all the inliers is defined by the 1121 flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case, 1122 the method #SOLVEPNP_EPNP will be used instead. 1123 */ 1124 CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, 1125 InputArray cameraMatrix, InputArray distCoeffs, 1126 OutputArray rvec, OutputArray tvec, 1127 bool useExtrinsicGuess = false, int iterationsCount = 100, 1128 float reprojectionError = 8.0, double confidence = 0.99, 1129 OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE ); 1130 1131 1132 /* 1133 Finds rotation and translation vector. 1134 If cameraMatrix is given then run P3P. Otherwise run linear P6P and output cameraMatrix too. 1135 */ 1136 CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, 1137 InputOutputArray cameraMatrix, InputArray distCoeffs, 1138 OutputArray rvec, OutputArray tvec, OutputArray inliers, 1139 const UsacParams ¶ms=UsacParams()); 1140 1141 /** @brief Finds an object pose from 3 3D-2D point correspondences. 1142 1143 @param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or 1144 1x3/3x1 3-channel. vector\<Point3f\> can be also passed here. 1145 @param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel. 1146 vector\<Point2f\> can be also passed here. 1147 @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . 1148 @param distCoeffs Input vector of distortion coefficients 1149 \f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are 1150 assumed. 1151 @param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from 1152 the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions. 1153 @param tvecs Output translation vectors. 1154 @param flags Method for solving a P3P problem: 1155 - @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang 1156 "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete). 1157 - @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis. 1158 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). 1159 1160 The function estimates the object pose given 3 object points, their corresponding image 1161 projections, as well as the camera intrinsic matrix and the distortion coefficients. 1162 1163 @note 1164 The solutions are sorted by reprojection errors (lowest to highest). 1165 */ 1166 CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints, 1167 InputArray cameraMatrix, InputArray distCoeffs, 1168 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1169 int flags ); 1170 1171 /** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame 1172 to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution. 1173 1174 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, 1175 where N is the number of points. vector\<Point3d\> can also be passed here. 1176 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, 1177 where N is the number of points. vector\<Point2d\> can also be passed here. 1178 @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . 1179 @param distCoeffs Input vector of distortion coefficients 1180 \f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are 1181 assumed. 1182 @param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from 1183 the model coordinate system to the camera coordinate system. Input values are used as an initial solution. 1184 @param tvec Input/Output translation vector. Input values are used as an initial solution. 1185 @param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm. 1186 1187 The function refines the object pose given at least 3 object points, their corresponding image 1188 projections, an initial solution for the rotation and translation vector, 1189 as well as the camera intrinsic matrix and the distortion coefficients. 1190 The function minimizes the projection error with respect to the rotation and the translation vectors, according 1191 to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process. 1192 */ 1193 CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints, 1194 InputArray cameraMatrix, InputArray distCoeffs, 1195 InputOutputArray rvec, InputOutputArray tvec, 1196 TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON)); 1197 1198 /** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame 1199 to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution. 1200 1201 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, 1202 where N is the number of points. vector\<Point3d\> can also be passed here. 1203 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, 1204 where N is the number of points. vector\<Point2d\> can also be passed here. 1205 @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . 1206 @param distCoeffs Input vector of distortion coefficients 1207 \f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are 1208 assumed. 1209 @param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from 1210 the model coordinate system to the camera coordinate system. Input values are used as an initial solution. 1211 @param tvec Input/Output translation vector. Input values are used as an initial solution. 1212 @param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm. 1213 @param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$ 1214 gain in the Damped Gauss-Newton formulation. 1215 1216 The function refines the object pose given at least 3 object points, their corresponding image 1217 projections, an initial solution for the rotation and translation vector, 1218 as well as the camera intrinsic matrix and the distortion coefficients. 1219 The function minimizes the projection error with respect to the rotation and the translation vectors, using a 1220 virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme. 1221 */ 1222 CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints, 1223 InputArray cameraMatrix, InputArray distCoeffs, 1224 InputOutputArray rvec, InputOutputArray tvec, 1225 TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON), 1226 double VVSlambda = 1); 1227 1228 /** @brief Finds an object pose from 3D-2D point correspondences. 1229 This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector> 1230 couple), depending on the number of input points and the chosen method: 1231 - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points. 1232 - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions. 1233 - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation. 1234 Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order: 1235 - point 0: [-squareLength / 2, squareLength / 2, 0] 1236 - point 1: [ squareLength / 2, squareLength / 2, 0] 1237 - point 2: [ squareLength / 2, -squareLength / 2, 0] 1238 - point 3: [-squareLength / 2, -squareLength / 2, 0] 1239 - for all the other flags, number of input points must be >= 4 and object points can be in any configuration. 1240 Only 1 solution is returned. 1241 1242 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1243 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here. 1244 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, 1245 where N is the number of points. vector\<Point2d\> can be also passed here. 1246 @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ . 1247 @param distCoeffs Input vector of distortion coefficients 1248 \f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are 1249 assumed. 1250 @param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from 1251 the model coordinate system to the camera coordinate system. 1252 @param tvecs Vector of output translation vectors. 1253 @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses 1254 the provided rvec and tvec values as initial approximations of the rotation and translation 1255 vectors, respectively, and further optimizes them. 1256 @param flags Method for solving a PnP problem: 1257 - @ref SOLVEPNP_ITERATIVE Iterative method is based on a Levenberg-Marquardt optimization. In 1258 this case the function finds such a pose that minimizes reprojection error, that is the sum 1259 of squared distances between the observed projections imagePoints and the projected (using 1260 #projectPoints ) objectPoints . 1261 - @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang 1262 "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete). 1263 In this case the function requires exactly four object and image points. 1264 - @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke, S. Roumeliotis 1265 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). 1266 In this case the function requires exactly four object and image points. 1267 - @ref SOLVEPNP_EPNP Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the 1268 paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp). 1269 - @ref SOLVEPNP_DLS **Broken implementation. Using this flag will fallback to EPnP.** \n 1270 Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis. 1271 "A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct). 1272 - @ref SOLVEPNP_UPNP **Broken implementation. Using this flag will fallback to EPnP.** \n 1273 Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto, 1274 F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length 1275 Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$ 1276 assuming that both have the same value. Then the cameraMatrix is updated with the estimated 1277 focal length. 1278 - @ref SOLVEPNP_IPPE Method is based on the paper of T. Collins and A. Bartoli. 1279 "Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method requires coplanar object points. 1280 - @ref SOLVEPNP_IPPE_SQUARE Method is based on the paper of Toby Collins and Adrien Bartoli. 1281 "Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method is suitable for marker pose estimation. 1282 It requires 4 coplanar object points defined in the following order: 1283 - point 0: [-squareLength / 2, squareLength / 2, 0] 1284 - point 1: [ squareLength / 2, squareLength / 2, 0] 1285 - point 2: [ squareLength / 2, -squareLength / 2, 0] 1286 - point 3: [-squareLength / 2, -squareLength / 2, 0] 1287 @param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE 1288 and useExtrinsicGuess is set to true. 1289 @param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE 1290 and useExtrinsicGuess is set to true. 1291 @param reprojectionError Optional vector of reprojection error, that is the RMS error 1292 (\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points 1293 and the 3D object points projected with the estimated pose. 1294 1295 The function estimates the object pose given a set of object points, their corresponding image 1296 projections, as well as the camera intrinsic matrix and the distortion coefficients, see the figure below 1297 (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward 1298 and the Z-axis forward). 1299 1300  1301 1302 Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$ 1303 using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$: 1304 1305 \f[ 1306 \begin{align*} 1307 \begin{bmatrix} 1308 u \\ 1309 v \\ 1310 1 1311 \end{bmatrix} &= 1312 \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{T}_w 1313 \begin{bmatrix} 1314 X_{w} \\ 1315 Y_{w} \\ 1316 Z_{w} \\ 1317 1 1318 \end{bmatrix} \\ 1319 \begin{bmatrix} 1320 u \\ 1321 v \\ 1322 1 1323 \end{bmatrix} &= 1324 \begin{bmatrix} 1325 f_x & 0 & c_x \\ 1326 0 & f_y & c_y \\ 1327 0 & 0 & 1 1328 \end{bmatrix} 1329 \begin{bmatrix} 1330 1 & 0 & 0 & 0 \\ 1331 0 & 1 & 0 & 0 \\ 1332 0 & 0 & 1 & 0 1333 \end{bmatrix} 1334 \begin{bmatrix} 1335 r_{11} & r_{12} & r_{13} & t_x \\ 1336 r_{21} & r_{22} & r_{23} & t_y \\ 1337 r_{31} & r_{32} & r_{33} & t_z \\ 1338 0 & 0 & 0 & 1 1339 \end{bmatrix} 1340 \begin{bmatrix} 1341 X_{w} \\ 1342 Y_{w} \\ 1343 Z_{w} \\ 1344 1 1345 \end{bmatrix} 1346 \end{align*} 1347 \f] 1348 1349 The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming 1350 a 3D point expressed in the world frame into the camera frame: 1351 1352 \f[ 1353 \begin{align*} 1354 \begin{bmatrix} 1355 X_c \\ 1356 Y_c \\ 1357 Z_c \\ 1358 1 1359 \end{bmatrix} &= 1360 \hspace{0.2em} ^{c}\bf{T}_w 1361 \begin{bmatrix} 1362 X_{w} \\ 1363 Y_{w} \\ 1364 Z_{w} \\ 1365 1 1366 \end{bmatrix} \\ 1367 \begin{bmatrix} 1368 X_c \\ 1369 Y_c \\ 1370 Z_c \\ 1371 1 1372 \end{bmatrix} &= 1373 \begin{bmatrix} 1374 r_{11} & r_{12} & r_{13} & t_x \\ 1375 r_{21} & r_{22} & r_{23} & t_y \\ 1376 r_{31} & r_{32} & r_{33} & t_z \\ 1377 0 & 0 & 0 & 1 1378 \end{bmatrix} 1379 \begin{bmatrix} 1380 X_{w} \\ 1381 Y_{w} \\ 1382 Z_{w} \\ 1383 1 1384 \end{bmatrix} 1385 \end{align*} 1386 \f] 1387 1388 @note 1389 - An example of how to use solvePnP for planar augmented reality can be found at 1390 opencv_source_code/samples/python/plane_ar.py 1391 - If you are using Python: 1392 - Numpy array slices won't work as input because solvePnP requires contiguous 1393 arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of 1394 modules/calib3d/src/solvepnp.cpp version 2.4.9) 1395 - The P3P algorithm requires image points to be in an array of shape (N,1,2) due 1396 to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) 1397 which requires 2-channel information. 1398 - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of 1399 it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = 1400 np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) 1401 - The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are 1402 unstable and sometimes give completely wrong results. If you pass one of these two 1403 flags, @ref SOLVEPNP_EPNP method will be used instead. 1404 - The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P 1405 methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions 1406 of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error). 1407 - With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points 1408 are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the 1409 global solution to converge. 1410 - With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar. 1411 - With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation. 1412 Number of input points must be 4. Object points must be defined in the following order: 1413 - point 0: [-squareLength / 2, squareLength / 2, 0] 1414 - point 1: [ squareLength / 2, squareLength / 2, 0] 1415 - point 2: [ squareLength / 2, -squareLength / 2, 0] 1416 - point 3: [-squareLength / 2, -squareLength / 2, 0] 1417 */ 1418 CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints, 1419 InputArray cameraMatrix, InputArray distCoeffs, 1420 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1421 bool useExtrinsicGuess = false, SolvePnPMethod flags = SOLVEPNP_ITERATIVE, 1422 InputArray rvec = noArray(), InputArray tvec = noArray(), 1423 OutputArray reprojectionError = noArray() ); 1424 1425 /** @brief Finds an initial camera intrinsic matrix from 3D-2D point correspondences. 1426 1427 @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern 1428 coordinate space. In the old interface all the per-view vectors are concatenated. See 1429 #calibrateCamera for details. 1430 @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the 1431 old interface all the per-view vectors are concatenated. 1432 @param imageSize Image size in pixels used to initialize the principal point. 1433 @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently. 1434 Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ . 1435 1436 The function estimates and returns an initial camera intrinsic matrix for the camera calibration process. 1437 Currently, the function only supports planar calibration patterns, which are patterns where each 1438 object point has z-coordinate =0. 1439 */ 1440 CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, 1441 InputArrayOfArrays imagePoints, 1442 Size imageSize, double aspectRatio = 1.0 ); 1443 1444 /** @brief Finds the positions of internal corners of the chessboard. 1445 1446 @param image Source chessboard view. It must be an 8-bit grayscale or color image. 1447 @param patternSize Number of inner corners per a chessboard row and column 1448 ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ). 1449 @param corners Output array of detected corners. 1450 @param flags Various operation flags that can be zero or a combination of the following values: 1451 - @ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black 1452 and white, rather than a fixed threshold level (computed from the average image brightness). 1453 - @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before 1454 applying fixed or adaptive thresholding. 1455 - @ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter, 1456 square-like shape) to filter out false quads extracted at the contour retrieval stage. 1457 - @ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners, 1458 and shortcut the call if none is found. This can drastically speed up the call in the 1459 degenerate condition when no chessboard is observed. 1460 1461 The function attempts to determine whether the input image is a view of the chessboard pattern and 1462 locate the internal chessboard corners. The function returns a non-zero value if all of the corners 1463 are found and they are placed in a certain order (row by row, left to right in every row). 1464 Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example, 1465 a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black 1466 squares touch each other. The detected coordinates are approximate, and to determine their positions 1467 more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with 1468 different parameters if returned coordinates are not accurate enough. 1469 1470 Sample usage of detecting and drawing chessboard corners: : 1471 @code 1472 Size patternsize(8,6); //interior number of corners 1473 Mat gray = ....; //source image 1474 vector<Point2f> corners; //this will be filled by the detected corners 1475 1476 //CALIB_CB_FAST_CHECK saves a lot of time on images 1477 //that do not contain any chessboard corners 1478 bool patternfound = findChessboardCorners(gray, patternsize, corners, 1479 CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE 1480 + CALIB_CB_FAST_CHECK); 1481 1482 if(patternfound) 1483 cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1), 1484 TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1)); 1485 1486 drawChessboardCorners(img, patternsize, Mat(corners), patternfound); 1487 @endcode 1488 @note The function requires white space (like a square-thick border, the wider the better) around 1489 the board to make the detection more robust in various environments. Otherwise, if there is no 1490 border and the background is dark, the outer black squares cannot be segmented properly and so the 1491 square grouping and ordering algorithm fails. 1492 */ 1493 CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, 1494 int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE ); 1495 1496 /* 1497 Checks whether the image contains chessboard of the specific size or not. 1498 If yes, nonzero value is returned. 1499 */ 1500 CV_EXPORTS_W bool checkChessboard(InputArray img, Size size); 1501 1502 /** @brief Finds the positions of internal corners of the chessboard using a sector based approach. 1503 1504 @param image Source chessboard view. It must be an 8-bit grayscale or color image. 1505 @param patternSize Number of inner corners per a chessboard row and column 1506 ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ). 1507 @param corners Output array of detected corners. 1508 @param flags Various operation flags that can be zero or a combination of the following values: 1509 - @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection. 1510 - @ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate. 1511 - @ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects. 1512 - @ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description). 1513 - @ref CALIB_CB_MARKER The detected pattern must have a marker (see description). 1514 This should be used if an accurate camera calibration is required. 1515 @param meta Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)). 1516 Each entry stands for one corner of the pattern and can have one of the following values: 1517 - 0 = no meta data attached 1518 - 1 = left-top corner of a black cell 1519 - 2 = left-top corner of a white cell 1520 - 3 = left-top corner of a black cell with a white marker dot 1521 - 4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner) 1522 1523 The function is analog to #findChessboardCorners but uses a localized radon 1524 transformation approximated by box filters being more robust to all sort of 1525 noise, faster on larger images and is able to directly return the sub-pixel 1526 position of the internal chessboard corners. The Method is based on the paper 1527 @cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for 1528 Calibration" demonstrating that the returned sub-pixel positions are more 1529 accurate than the one returned by cornerSubPix allowing a precise camera 1530 calibration for demanding applications. 1531 1532 In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given, 1533 the result can be recovered from the optional meta array. Both flags are 1534 helpful to use calibration patterns exceeding the field of view of the camera. 1535 These oversized patterns allow more accurate calibrations as corners can be 1536 utilized, which are as close as possible to the image borders. For a 1537 consistent coordinate system across all images, the optional marker (see image 1538 below) can be used to move the origin of the board to the location where the 1539 black circle is located. 1540 1541 @note The function requires a white boarder with roughly the same width as one 1542 of the checkerboard fields around the whole board to improve the detection in 1543 various environments. In addition, because of the localized radon 1544 transformation it is beneficial to use round corners for the field corners 1545 which are located on the outside of the board. The following figure illustrates 1546 a sample checkerboard optimized for the detection. However, any other checkerboard 1547 can be used as well. 1548  1549 */ 1550 CV_EXPORTS_AS(findChessboardCornersSBWithMeta) 1551 bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners, 1552 int flags,OutputArray meta); 1553 /** @overload */ 1554 CV_EXPORTS_W inline 1555 bool findChessboardCornersSB(InputArray image, Size patternSize, OutputArray corners, 1556 int flags = 0) 1557 { 1558 return findChessboardCornersSB(image, patternSize, corners, flags, noArray()); 1559 } 1560 1561 /** @brief Estimates the sharpness of a detected chessboard. 1562 1563 Image sharpness, as well as brightness, are a critical parameter for accuracte 1564 camera calibration. For accessing these parameters for filtering out 1565 problematic calibraiton images, this method calculates edge profiles by traveling from 1566 black to white chessboard cell centers. Based on this, the number of pixels is 1567 calculated required to transit from black to white. This width of the 1568 transition area is a good indication of how sharp the chessboard is imaged 1569 and should be below ~3.0 pixels. 1570 1571 @param image Gray image used to find chessboard corners 1572 @param patternSize Size of a found chessboard pattern 1573 @param corners Corners found by #findChessboardCornersSB 1574 @param rise_distance Rise distance 0.8 means 10% ... 90% of the final signal strength 1575 @param vertical By default edge responses for horizontal lines are calculated 1576 @param sharpness Optional output array with a sharpness value for calculated edge responses (see description) 1577 1578 The optional sharpness array is of type CV_32FC1 and has for each calculated 1579 profile one row with the following five entries: 1580 * 0 = x coordinate of the underlying edge in the image 1581 * 1 = y coordinate of the underlying edge in the image 1582 * 2 = width of the transition area (sharpness) 1583 * 3 = signal strength in the black cell (min brightness) 1584 * 4 = signal strength in the white cell (max brightness) 1585 1586 @return Scalar(average sharpness, average min brightness, average max brightness,0) 1587 */ 1588 CV_EXPORTS_W Scalar estimateChessboardSharpness(InputArray image, Size patternSize, InputArray corners, 1589 float rise_distance=0.8F,bool vertical=false, 1590 OutputArray sharpness=noArray()); 1591 1592 1593 //! finds subpixel-accurate positions of the chessboard corners 1594 CV_EXPORTS_W bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size ); 1595 1596 /** @brief Renders the detected chessboard corners. 1597 1598 @param image Destination image. It must be an 8-bit color image. 1599 @param patternSize Number of inner corners per a chessboard row and column 1600 (patternSize = cv::Size(points_per_row,points_per_column)). 1601 @param corners Array of detected corners, the output of #findChessboardCorners. 1602 @param patternWasFound Parameter indicating whether the complete board was found or not. The 1603 return value of #findChessboardCorners should be passed here. 1604 1605 The function draws individual chessboard corners detected either as red circles if the board was not 1606 found, or as colored corners connected with lines if the board was found. 1607 */ 1608 CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize, 1609 InputArray corners, bool patternWasFound ); 1610 1611 /** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP 1612 1613 @param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered. 1614 @param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters. 1615 \f$\cameramatrix{A}\f$ 1616 @param distCoeffs Input vector of distortion coefficients 1617 \f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed. 1618 @param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from 1619 the model coordinate system to the camera coordinate system. 1620 @param tvec Translation vector. 1621 @param length Length of the painted axes in the same unit than tvec (usually in meters). 1622 @param thickness Line thickness of the painted axes. 1623 1624 This function draws the axes of the world/object coordinate system w.r.t. to the camera frame. 1625 OX is drawn in red, OY in green and OZ in blue. 1626 */ 1627 CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs, 1628 InputArray rvec, InputArray tvec, float length, int thickness=3); 1629 1630 struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters 1631 { 1632 CV_WRAP CirclesGridFinderParameters(); 1633 CV_PROP_RW cv::Size2f densityNeighborhoodSize; 1634 CV_PROP_RW float minDensity; 1635 CV_PROP_RW int kmeansAttempts; 1636 CV_PROP_RW int minDistanceToAddKeypoint; 1637 CV_PROP_RW int keypointScale; 1638 CV_PROP_RW float minGraphConfidence; 1639 CV_PROP_RW float vertexGain; 1640 CV_PROP_RW float vertexPenalty; 1641 CV_PROP_RW float existingVertexGain; 1642 CV_PROP_RW float edgeGain; 1643 CV_PROP_RW float edgePenalty; 1644 CV_PROP_RW float convexHullFactor; 1645 CV_PROP_RW float minRNGEdgeSwitchDist; 1646 1647 enum GridType 1648 { 1649 SYMMETRIC_GRID, ASYMMETRIC_GRID 1650 }; 1651 GridType gridType; 1652 1653 CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING. 1654 CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from prediction. Used by CALIB_CB_CLUSTERING. 1655 }; 1656 1657 #ifndef DISABLE_OPENCV_3_COMPATIBILITY 1658 typedef CirclesGridFinderParameters CirclesGridFinderParameters2; 1659 #endif 1660 1661 /** @brief Finds centers in the grid of circles. 1662 1663 @param image grid view of input circles; it must be an 8-bit grayscale or color image. 1664 @param patternSize number of circles per row and column 1665 ( patternSize = Size(points_per_row, points_per_colum) ). 1666 @param centers output array of detected centers. 1667 @param flags various operation flags that can be one of the following values: 1668 - @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles. 1669 - @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles. 1670 - @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to 1671 perspective distortions but much more sensitive to background clutter. 1672 @param blobDetector feature detector that finds blobs like dark circles on light background. 1673 If `blobDetector` is NULL then `image` represents Point2f array of candidates. 1674 @param parameters struct for finding circles in a grid pattern. 1675 1676 The function attempts to determine whether the input image contains a grid of circles. If it is, the 1677 function locates centers of the circles. The function returns a non-zero value if all of the centers 1678 have been found and they have been placed in a certain order (row by row, left to right in every 1679 row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0. 1680 1681 Sample usage of detecting and drawing the centers of circles: : 1682 @code 1683 Size patternsize(7,7); //number of centers 1684 Mat gray = ...; //source image 1685 vector<Point2f> centers; //this will be filled by the detected centers 1686 1687 bool patternfound = findCirclesGrid(gray, patternsize, centers); 1688 1689 drawChessboardCorners(img, patternsize, Mat(centers), patternfound); 1690 @endcode 1691 @note The function requires white space (like a square-thick border, the wider the better) around 1692 the board to make the detection more robust in various environments. 1693 */ 1694 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize, 1695 OutputArray centers, int flags, 1696 const Ptr<FeatureDetector> &blobDetector, 1697 const CirclesGridFinderParameters& parameters); 1698 1699 /** @overload */ 1700 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize, 1701 OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID, 1702 const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create()); 1703 1704 /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration 1705 pattern. 1706 1707 @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in 1708 the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer 1709 vector contains as many elements as the number of pattern views. If the same calibration pattern 1710 is shown in each view and it is fully visible, all the vectors will be the same. Although, it is 1711 possible to use partially occluded patterns or even different patterns in different views. Then, 1712 the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's 1713 XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig. 1714 In the old interface all the vectors of object points from different views are concatenated 1715 together. 1716 @param imagePoints In the new interface it is a vector of vectors of the projections of calibration 1717 pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and 1718 objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal, 1719 respectively. In the old interface all the vectors of object points from different views are 1720 concatenated together. 1721 @param imageSize Size of the image used only to initialize the camera intrinsic matrix. 1722 @param cameraMatrix Input/output 3x3 floating-point camera intrinsic matrix 1723 \f$\cameramatrix{A}\f$ . If @ref CALIB_USE_INTRINSIC_GUESS 1724 and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH 1725 are specified, some or all of fx, fy, cx, cy must be initialized before calling the function. 1726 @param distCoeffs Input/output vector of distortion coefficients 1727 \f$\distcoeffs\f$. 1728 @param rvecs Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view 1729 (e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding 1730 i-th translation vector (see the next output parameter description) brings the calibration pattern 1731 from the object coordinate space (in which object points are specified) to the camera coordinate 1732 space. In more technical terms, the tuple of the i-th rotation and translation vector performs 1733 a change of basis from object coordinate space to camera coordinate space. Due to its duality, this 1734 tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate 1735 space. 1736 @param tvecs Output vector of translation vectors estimated for each pattern view, see parameter 1737 describtion above. 1738 @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic 1739 parameters. Order of deviations values: 1740 \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, 1741 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. 1742 @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic 1743 parameters. Order of deviations values: \f$(R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\f$ where M is 1744 the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors. 1745 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. 1746 @param flags Different flags that may be zero or a combination of the following values: 1747 - @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of 1748 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image 1749 center ( imageSize is used), and focal distances are computed in a least-squares fashion. 1750 Note, that if intrinsic parameters are known, there is no need to use this function just to 1751 estimate extrinsic parameters. Use @ref solvePnP instead. 1752 - @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global 1753 optimization. It stays at the center or at a different location specified when 1754 @ref CALIB_USE_INTRINSIC_GUESS is set too. 1755 - @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The 1756 ratio fx/fy stays the same as in the input cameraMatrix . When 1757 @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are 1758 ignored, only their ratio is computed and used further. 1759 - @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set 1760 to zeros and stay zero. 1761 - @ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if 1762 @ref CALIB_USE_INTRINSIC_GUESS is set. 1763 - @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion 1764 coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is 1765 set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1766 - @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the 1767 backward compatibility, this extra flag should be explicitly specified to make the 1768 calibration function use the rational model and return 8 coefficients or more. 1769 - @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the 1770 backward compatibility, this extra flag should be explicitly specified to make the 1771 calibration function use the thin prism model and return 12 coefficients or more. 1772 - @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during 1773 the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 1774 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1775 - @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the 1776 backward compatibility, this extra flag should be explicitly specified to make the 1777 calibration function use the tilted sensor model and return 14 coefficients. 1778 - @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during 1779 the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 1780 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1781 @param criteria Termination criteria for the iterative optimization algorithm. 1782 1783 @return the overall RMS re-projection error. 1784 1785 The function estimates the intrinsic camera parameters and extrinsic parameters for each of the 1786 views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object 1787 points and their corresponding 2D projections in each view must be specified. That may be achieved 1788 by using an object with known geometry and easily detectable feature points. Such an object is 1789 called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as 1790 a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic 1791 parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration 1792 patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also 1793 be used as long as initial cameraMatrix is provided. 1794 1795 The algorithm performs the following steps: 1796 1797 - Compute the initial intrinsic parameters (the option only available for planar calibration 1798 patterns) or read them from the input parameters. The distortion coefficients are all set to 1799 zeros initially unless some of CALIB_FIX_K? are specified. 1800 1801 - Estimate the initial camera pose as if the intrinsic parameters have been already known. This is 1802 done using @ref solvePnP . 1803 1804 - Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, 1805 that is, the total sum of squared distances between the observed feature points imagePoints and 1806 the projected (using the current estimates for camera parameters and the poses) object points 1807 objectPoints. See @ref projectPoints for details. 1808 1809 @note 1810 If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration, 1811 and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and 1812 \f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and 1813 \f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols) 1814 instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners. 1815 1816 @sa 1817 calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, 1818 undistort 1819 */ 1820 CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints, 1821 InputArrayOfArrays imagePoints, Size imageSize, 1822 InputOutputArray cameraMatrix, InputOutputArray distCoeffs, 1823 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1824 OutputArray stdDeviationsIntrinsics, 1825 OutputArray stdDeviationsExtrinsics, 1826 OutputArray perViewErrors, 1827 int flags = 0, TermCriteria criteria = TermCriteria( 1828 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); 1829 1830 /** @overload */ 1831 CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints, 1832 InputArrayOfArrays imagePoints, Size imageSize, 1833 InputOutputArray cameraMatrix, InputOutputArray distCoeffs, 1834 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1835 int flags = 0, TermCriteria criteria = TermCriteria( 1836 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); 1837 1838 /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern. 1839 1840 This function is an extension of #calibrateCamera with the method of releasing object which was 1841 proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar 1842 targets (calibration plates), this method can dramatically improve the precision of the estimated 1843 camera parameters. Both the object-releasing method and standard method are supported by this 1844 function. Use the parameter **iFixedPoint** for method selection. In the internal implementation, 1845 #calibrateCamera is a wrapper for this function. 1846 1847 @param objectPoints Vector of vectors of calibration pattern points in the calibration pattern 1848 coordinate space. See #calibrateCamera for details. If the method of releasing object to be used, 1849 the identical calibration board must be used in each view and it must be fully visible, and all 1850 objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration 1851 target has to be rigid, or at least static if the camera (rather than the calibration target) is 1852 shifted for grabbing images.** 1853 @param imagePoints Vector of vectors of the projections of calibration pattern points. See 1854 #calibrateCamera for details. 1855 @param imageSize Size of the image used only to initialize the intrinsic camera matrix. 1856 @param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as 1857 a switch for calibration method selection. If object-releasing method to be used, pass in the 1858 parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will 1859 make standard calibration method selected. Usually the top-right corner point of the calibration 1860 board grid is recommended to be fixed when object-releasing method being utilized. According to 1861 \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front 1862 and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and 1863 newObjPoints are only possible if coordinates of these three fixed points are accurate enough. 1864 @param cameraMatrix Output 3x3 floating-point camera matrix. See #calibrateCamera for details. 1865 @param distCoeffs Output vector of distortion coefficients. See #calibrateCamera for details. 1866 @param rvecs Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera 1867 for details. 1868 @param tvecs Output vector of translation vectors estimated for each pattern view. 1869 @param newObjPoints The updated output vector of calibration pattern points. The coordinates might 1870 be scaled based on three fixed points. The returned coordinates are accurate only if the above 1871 mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter 1872 is ignored with standard calibration method. 1873 @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. 1874 See #calibrateCamera for details. 1875 @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. 1876 See #calibrateCamera for details. 1877 @param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates 1878 of calibration pattern points. It has the same size and order as objectPoints[0] vector. This 1879 parameter is ignored with standard calibration method. 1880 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. 1881 @param flags Different flags that may be zero or a combination of some predefined values. See 1882 #calibrateCamera for details. If the method of releasing object is used, the calibration time may 1883 be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially 1884 less precise and less stable in some rare cases. 1885 @param criteria Termination criteria for the iterative optimization algorithm. 1886 1887 @return the overall RMS re-projection error. 1888 1889 The function estimates the intrinsic camera parameters and extrinsic parameters for each of the 1890 views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See 1891 #calibrateCamera for other detailed explanations. 1892 @sa 1893 calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort 1894 */ 1895 CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints, 1896 InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint, 1897 InputOutputArray cameraMatrix, InputOutputArray distCoeffs, 1898 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1899 OutputArray newObjPoints, 1900 OutputArray stdDeviationsIntrinsics, 1901 OutputArray stdDeviationsExtrinsics, 1902 OutputArray stdDeviationsObjPoints, 1903 OutputArray perViewErrors, 1904 int flags = 0, TermCriteria criteria = TermCriteria( 1905 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); 1906 1907 /** @overload */ 1908 CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints, 1909 InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint, 1910 InputOutputArray cameraMatrix, InputOutputArray distCoeffs, 1911 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1912 OutputArray newObjPoints, 1913 int flags = 0, TermCriteria criteria = TermCriteria( 1914 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); 1915 1916 /** @brief Computes useful camera characteristics from the camera intrinsic matrix. 1917 1918 @param cameraMatrix Input camera intrinsic matrix that can be estimated by #calibrateCamera or 1919 #stereoCalibrate . 1920 @param imageSize Input image size in pixels. 1921 @param apertureWidth Physical width in mm of the sensor. 1922 @param apertureHeight Physical height in mm of the sensor. 1923 @param fovx Output field of view in degrees along the horizontal sensor axis. 1924 @param fovy Output field of view in degrees along the vertical sensor axis. 1925 @param focalLength Focal length of the lens in mm. 1926 @param principalPoint Principal point in mm. 1927 @param aspectRatio \f$f_y/f_x\f$ 1928 1929 The function computes various useful camera characteristics from the previously estimated camera 1930 matrix. 1931 1932 @note 1933 Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for 1934 the chessboard pitch (it can thus be any value). 1935 */ 1936 CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize, 1937 double apertureWidth, double apertureHeight, 1938 CV_OUT double& fovx, CV_OUT double& fovy, 1939 CV_OUT double& focalLength, CV_OUT Point2d& principalPoint, 1940 CV_OUT double& aspectRatio ); 1941 1942 /** @brief Calibrates a stereo camera set up. This function finds the intrinsic parameters 1943 for each of the two cameras and the extrinsic parameters between the two cameras. 1944 1945 @param objectPoints Vector of vectors of the calibration pattern points. The same structure as 1946 in @ref calibrateCamera. For each pattern view, both cameras need to see the same object 1947 points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be 1948 equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to 1949 be equal for each i. 1950 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, 1951 observed by the first camera. The same structure as in @ref calibrateCamera. 1952 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, 1953 observed by the second camera. The same structure as in @ref calibrateCamera. 1954 @param cameraMatrix1 Input/output camera intrinsic matrix for the first camera, the same as in 1955 @ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below. 1956 @param distCoeffs1 Input/output vector of distortion coefficients, the same as in 1957 @ref calibrateCamera. 1958 @param cameraMatrix2 Input/output second camera intrinsic matrix for the second camera. See description for 1959 cameraMatrix1. 1960 @param distCoeffs2 Input/output lens distortion coefficients for the second camera. See 1961 description for distCoeffs1. 1962 @param imageSize Size of the image used only to initialize the camera intrinsic matrices. 1963 @param R Output rotation matrix. Together with the translation vector T, this matrix brings 1964 points given in the first camera's coordinate system to points in the second camera's 1965 coordinate system. In more technical terms, the tuple of R and T performs a change of basis 1966 from the first camera's coordinate system to the second camera's coordinate system. Due to its 1967 duality, this tuple is equivalent to the position of the first camera with respect to the 1968 second camera coordinate system. 1969 @param T Output translation vector, see description above. 1970 @param E Output essential matrix. 1971 @param F Output fundamental matrix. 1972 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. 1973 @param flags Different flags that may be zero or a combination of the following values: 1974 - @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F 1975 matrices are estimated. 1976 - @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters 1977 according to the specified flags. Initial values are provided by the user. 1978 - @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further. 1979 Otherwise R and T are initialized to the median value of the pattern views (each dimension separately). 1980 - @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization. 1981 - @ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ . 1982 - @ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$ 1983 . 1984 - @ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ . 1985 - @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to 1986 zeros and fix there. 1987 - @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial 1988 distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, 1989 the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1990 - @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward 1991 compatibility, this extra flag should be explicitly specified to make the calibration 1992 function use the rational model and return 8 coefficients. If the flag is not set, the 1993 function computes and returns only 5 distortion coefficients. 1994 - @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the 1995 backward compatibility, this extra flag should be explicitly specified to make the 1996 calibration function use the thin prism model and return 12 coefficients. If the flag is not 1997 set, the function computes and returns only 5 distortion coefficients. 1998 - @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during 1999 the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 2000 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 2001 - @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the 2002 backward compatibility, this extra flag should be explicitly specified to make the 2003 calibration function use the tilted sensor model and return 14 coefficients. If the flag is not 2004 set, the function computes and returns only 5 distortion coefficients. 2005 - @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during 2006 the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 2007 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 2008 @param criteria Termination criteria for the iterative optimization algorithm. 2009 2010 The function estimates the transformation between two cameras making a stereo pair. If one computes 2011 the poses of an object relative to the first camera and to the second camera, 2012 ( \f$R_1\f$,\f$T_1\f$ ) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the 2013 relative position and orientation between the two cameras are fixed, then those poses definitely 2014 relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the 2015 two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is 2016 given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that: 2017 2018 \f[R_2=R R_1\f] 2019 \f[T_2=R T_1 + T.\f] 2020 2021 Therefore, one can compute the coordinate representation of a 3D point for the second camera's 2022 coordinate system when given the point's coordinate representation in the first camera's coordinate 2023 system: 2024 2025 \f[\begin{bmatrix} 2026 X_2 \\ 2027 Y_2 \\ 2028 Z_2 \\ 2029 1 2030 \end{bmatrix} = \begin{bmatrix} 2031 R & T \\ 2032 0 & 1 2033 \end{bmatrix} \begin{bmatrix} 2034 X_1 \\ 2035 Y_1 \\ 2036 Z_1 \\ 2037 1 2038 \end{bmatrix}.\f] 2039 2040 2041 Optionally, it computes the essential matrix E: 2042 2043 \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f] 2044 2045 where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . 2046 And the function can also compute the fundamental matrix F: 2047 2048 \f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f] 2049 2050 Besides the stereo-related information, the function can also perform a full calibration of each of 2051 the two cameras. However, due to the high dimensionality of the parameter space and noise in the 2052 input data, the function can diverge from the correct solution. If the intrinsic parameters can be 2053 estimated with high accuracy for each of the cameras individually (for example, using 2054 #calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the 2055 function along with the computed intrinsic parameters. Otherwise, if all the parameters are 2056 estimated at once, it makes sense to restrict some parameters, for example, pass 2057 @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a 2058 reasonable assumption. 2059 2060 Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the 2061 points in all the available views from both cameras. The function returns the final value of the 2062 re-projection error. 2063 */ 2064 CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints, 2065 InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, 2066 InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, 2067 InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, 2068 Size imageSize, InputOutputArray R,InputOutputArray T, OutputArray E, OutputArray F, 2069 OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC, 2070 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) ); 2071 2072 /// @overload 2073 CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints, 2074 InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, 2075 InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, 2076 InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, 2077 Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F, 2078 int flags = CALIB_FIX_INTRINSIC, 2079 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) ); 2080 2081 /** @brief Computes rectification transforms for each head of a calibrated stereo camera. 2082 2083 @param cameraMatrix1 First camera intrinsic matrix. 2084 @param distCoeffs1 First camera distortion parameters. 2085 @param cameraMatrix2 Second camera intrinsic matrix. 2086 @param distCoeffs2 Second camera distortion parameters. 2087 @param imageSize Size of the image used for stereo calibration. 2088 @param R Rotation matrix from the coordinate system of the first camera to the second camera, 2089 see @ref stereoCalibrate. 2090 @param T Translation vector from the coordinate system of the first camera to the second camera, 2091 see @ref stereoCalibrate. 2092 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix 2093 brings points given in the unrectified first camera's coordinate system to points in the rectified 2094 first camera's coordinate system. In more technical terms, it performs a change of basis from the 2095 unrectified first camera's coordinate system to the rectified first camera's coordinate system. 2096 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix 2097 brings points given in the unrectified second camera's coordinate system to points in the rectified 2098 second camera's coordinate system. In more technical terms, it performs a change of basis from the 2099 unrectified second camera's coordinate system to the rectified second camera's coordinate system. 2100 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first 2101 camera, i.e. it projects points given in the rectified first camera coordinate system into the 2102 rectified first camera's image. 2103 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second 2104 camera, i.e. it projects points given in the rectified first camera coordinate system into the 2105 rectified second camera's image. 2106 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D). 2107 @param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set, 2108 the function makes the principal points of each camera have the same pixel coordinates in the 2109 rectified views. And if the flag is not set, the function may still shift the images in the 2110 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the 2111 useful image area. 2112 @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default 2113 scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified 2114 images are zoomed and shifted so that only valid pixels are visible (no black areas after 2115 rectification). alpha=1 means that the rectified image is decimated and shifted so that all the 2116 pixels from the original images from the cameras are retained in the rectified images (no source 2117 image pixels are lost). Any intermediate value yields an intermediate result between 2118 those two extreme cases. 2119 @param newImageSize New image resolution after rectification. The same size should be passed to 2120 #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) 2121 is passed (default), it is set to the original imageSize . Setting it to a larger value can help you 2122 preserve details in the original image, especially when there is a big radial distortion. 2123 @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels 2124 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller 2125 (see the picture below). 2126 @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels 2127 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller 2128 (see the picture below). 2129 2130 The function computes the rotation matrices for each camera that (virtually) make both camera image 2131 planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies 2132 the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate 2133 as input. As output, it provides two rotation matrices and also two projection matrices in the new 2134 coordinates. The function distinguishes the following two cases: 2135 2136 - **Horizontal stereo**: the first and the second camera views are shifted relative to each other 2137 mainly along the x-axis (with possible small vertical shift). In the rectified images, the 2138 corresponding epipolar lines in the left and right cameras are horizontal and have the same 2139 y-coordinate. P1 and P2 look like: 2140 2141 \f[\texttt{P1} = \begin{bmatrix} 2142 f & 0 & cx_1 & 0 \\ 2143 0 & f & cy & 0 \\ 2144 0 & 0 & 1 & 0 2145 \end{bmatrix}\f] 2146 2147 \f[\texttt{P2} = \begin{bmatrix} 2148 f & 0 & cx_2 & T_x*f \\ 2149 0 & f & cy & 0 \\ 2150 0 & 0 & 1 & 0 2151 \end{bmatrix} ,\f] 2152 2153 where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if 2154 @ref CALIB_ZERO_DISPARITY is set. 2155 2156 - **Vertical stereo**: the first and the second camera views are shifted relative to each other 2157 mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar 2158 lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like: 2159 2160 \f[\texttt{P1} = \begin{bmatrix} 2161 f & 0 & cx & 0 \\ 2162 0 & f & cy_1 & 0 \\ 2163 0 & 0 & 1 & 0 2164 \end{bmatrix}\f] 2165 2166 \f[\texttt{P2} = \begin{bmatrix} 2167 f & 0 & cx & 0 \\ 2168 0 & f & cy_2 & T_y*f \\ 2169 0 & 0 & 1 & 0 2170 \end{bmatrix},\f] 2171 2172 where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if 2173 @ref CALIB_ZERO_DISPARITY is set. 2174 2175 As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera 2176 matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to 2177 initialize the rectification map for each camera. 2178 2179 See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through 2180 the corresponding image regions. This means that the images are well rectified, which is what most 2181 stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that 2182 their interiors are all valid pixels. 2183 2184  2185 */ 2186 CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1, 2187 InputArray cameraMatrix2, InputArray distCoeffs2, 2188 Size imageSize, InputArray R, InputArray T, 2189 OutputArray R1, OutputArray R2, 2190 OutputArray P1, OutputArray P2, 2191 OutputArray Q, int flags = CALIB_ZERO_DISPARITY, 2192 double alpha = -1, Size newImageSize = Size(), 2193 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 ); 2194 2195 /** @brief Computes a rectification transform for an uncalibrated stereo camera. 2196 2197 @param points1 Array of feature points in the first image. 2198 @param points2 The corresponding points in the second image. The same formats as in 2199 #findFundamentalMat are supported. 2200 @param F Input fundamental matrix. It can be computed from the same set of point pairs using 2201 #findFundamentalMat . 2202 @param imgSize Size of the image. 2203 @param H1 Output rectification homography matrix for the first image. 2204 @param H2 Output rectification homography matrix for the second image. 2205 @param threshold Optional threshold used to filter out the outliers. If the parameter is greater 2206 than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points 2207 for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are 2208 rejected prior to computing the homographies. Otherwise, all the points are considered inliers. 2209 2210 The function computes the rectification transformations without knowing intrinsic parameters of the 2211 cameras and their relative position in the space, which explains the suffix "uncalibrated". Another 2212 related difference from #stereoRectify is that the function outputs not the rectification 2213 transformations in the object (3D) space, but the planar perspective transformations encoded by the 2214 homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 . 2215 2216 @note 2217 While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily 2218 depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, 2219 it would be better to correct it before computing the fundamental matrix and calling this 2220 function. For example, distortion coefficients can be estimated for each head of stereo camera 2221 separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or 2222 just the point coordinates can be corrected with #undistortPoints . 2223 */ 2224 CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2, 2225 InputArray F, Size imgSize, 2226 OutputArray H1, OutputArray H2, 2227 double threshold = 5 ); 2228 2229 //! computes the rectification transformations for 3-head camera, where all the heads are on the same line. 2230 CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1, 2231 InputArray cameraMatrix2, InputArray distCoeffs2, 2232 InputArray cameraMatrix3, InputArray distCoeffs3, 2233 InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3, 2234 Size imageSize, InputArray R12, InputArray T12, 2235 InputArray R13, InputArray T13, 2236 OutputArray R1, OutputArray R2, OutputArray R3, 2237 OutputArray P1, OutputArray P2, OutputArray P3, 2238 OutputArray Q, double alpha, Size newImgSize, 2239 CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags ); 2240 2241 /** @brief Returns the new camera intrinsic matrix based on the free scaling parameter. 2242 2243 @param cameraMatrix Input camera intrinsic matrix. 2244 @param distCoeffs Input vector of distortion coefficients 2245 \f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are 2246 assumed. 2247 @param imageSize Original image size. 2248 @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are 2249 valid) and 1 (when all the source image pixels are retained in the undistorted image). See 2250 #stereoRectify for details. 2251 @param newImgSize Image size after rectification. By default, it is set to imageSize . 2252 @param validPixROI Optional output rectangle that outlines all-good-pixels region in the 2253 undistorted image. See roi1, roi2 description in #stereoRectify . 2254 @param centerPrincipalPoint Optional flag that indicates whether in the new camera intrinsic matrix the 2255 principal point should be at the image center or not. By default, the principal point is chosen to 2256 best fit a subset of the source image (determined by alpha) to the corrected image. 2257 @return new_camera_matrix Output new camera intrinsic matrix. 2258 2259 The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter. 2260 By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original 2261 image pixels if there is valuable information in the corners alpha=1 , or get something in between. 2262 When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to 2263 "virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion 2264 coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to 2265 #initUndistortRectifyMap to produce the maps for #remap . 2266 */ 2267 CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs, 2268 Size imageSize, double alpha, Size newImgSize = Size(), 2269 CV_OUT Rect* validPixROI = 0, 2270 bool centerPrincipalPoint = false); 2271 2272 /** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$ 2273 2274 @param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point 2275 expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$). 2276 This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors, 2277 for all the transformations from gripper frame to robot base frame. 2278 @param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point 2279 expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$). 2280 This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations 2281 from gripper frame to robot base frame. 2282 @param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point 2283 expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$). 2284 This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors, 2285 for all the transformations from calibration target frame to camera frame. 2286 @param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point 2287 expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$). 2288 This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations 2289 from calibration target frame to camera frame. 2290 @param[out] R_cam2gripper Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point 2291 expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$). 2292 @param[out] t_cam2gripper Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point 2293 expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$). 2294 @param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod 2295 2296 The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the 2297 rotation then the translation (separable solutions) and the following methods are implemented: 2298 - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89 2299 - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94 2300 - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95 2301 2302 Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions), 2303 with the following implemented methods: 2304 - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99 2305 - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98 2306 2307 The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye") 2308 mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand. 2309 2310 The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot 2311 end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting 2312 the suitable transformations to the function, see below. 2313 2314  2315 2316 The calibration procedure is the following: 2317 - a static calibration pattern is used to estimate the transformation between the target frame 2318 and the camera frame 2319 - the robot gripper is moved in order to acquire several poses 2320 - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for 2321 instance the robot kinematics 2322 \f[ 2323 \begin{bmatrix} 2324 X_b\\ 2325 Y_b\\ 2326 Z_b\\ 2327 1 2328 \end{bmatrix} 2329 = 2330 \begin{bmatrix} 2331 _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\ 2332 0_{1 \times 3} & 1 2333 \end{bmatrix} 2334 \begin{bmatrix} 2335 X_g\\ 2336 Y_g\\ 2337 Z_g\\ 2338 1 2339 \end{bmatrix} 2340 \f] 2341 - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using 2342 for instance a pose estimation method (PnP) from 2D-3D point correspondences 2343 \f[ 2344 \begin{bmatrix} 2345 X_c\\ 2346 Y_c\\ 2347 Z_c\\ 2348 1 2349 \end{bmatrix} 2350 = 2351 \begin{bmatrix} 2352 _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\ 2353 0_{1 \times 3} & 1 2354 \end{bmatrix} 2355 \begin{bmatrix} 2356 X_t\\ 2357 Y_t\\ 2358 Z_t\\ 2359 1 2360 \end{bmatrix} 2361 \f] 2362 2363 The Hand-Eye calibration procedure returns the following homogeneous transformation 2364 \f[ 2365 \begin{bmatrix} 2366 X_g\\ 2367 Y_g\\ 2368 Z_g\\ 2369 1 2370 \end{bmatrix} 2371 = 2372 \begin{bmatrix} 2373 _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\ 2374 0_{1 \times 3} & 1 2375 \end{bmatrix} 2376 \begin{bmatrix} 2377 X_c\\ 2378 Y_c\\ 2379 Z_c\\ 2380 1 2381 \end{bmatrix} 2382 \f] 2383 2384 This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation: 2385 - for an eye-in-hand configuration 2386 \f[ 2387 \begin{align*} 2388 ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &= 2389 \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\ 2390 2391 (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &= 2392 \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\ 2393 2394 \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\ 2395 \end{align*} 2396 \f] 2397 2398 - for an eye-to-hand configuration 2399 \f[ 2400 \begin{align*} 2401 ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &= 2402 \hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\ 2403 2404 (^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &= 2405 \hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\ 2406 2407 \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\ 2408 \end{align*} 2409 \f] 2410 2411 \note 2412 Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration). 2413 \note 2414 A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation. 2415 So at least 3 different poses are required, but it is strongly recommended to use many more poses. 2416 2417 */ 2418 CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base, 2419 InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam, 2420 OutputArray R_cam2gripper, OutputArray t_cam2gripper, 2421 HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI ); 2422 2423 /** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$ 2424 2425 @param[in] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point 2426 expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$). 2427 This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors, 2428 for all the transformations from world frame to the camera frame. 2429 @param[in] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point 2430 expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$). 2431 This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations 2432 from world frame to the camera frame. 2433 @param[in] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point 2434 expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$). 2435 This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors, 2436 for all the transformations from robot base frame to the gripper frame. 2437 @param[in] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point 2438 expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$). 2439 This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations 2440 from robot base frame to the gripper frame. 2441 @param[out] R_base2world Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point 2442 expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$). 2443 @param[out] t_base2world Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point 2444 expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$). 2445 @param[out] R_gripper2cam Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point 2446 expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$). 2447 @param[out] t_gripper2cam Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point 2448 expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$). 2449 @param[in] method One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod 2450 2451 The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the 2452 rotation then the translation (separable solutions): 2453 - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR 2454 2455 Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions), 2456 with the following implemented method: 2457 - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA 2458 2459 The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame 2460 and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated. 2461 2462  2463 2464 The calibration procedure is the following: 2465 - a static calibration pattern is used to estimate the transformation between the target frame 2466 and the camera frame 2467 - the robot gripper is moved in order to acquire several poses 2468 - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for 2469 instance the robot kinematics 2470 \f[ 2471 \begin{bmatrix} 2472 X_g\\ 2473 Y_g\\ 2474 Z_g\\ 2475 1 2476 \end{bmatrix} 2477 = 2478 \begin{bmatrix} 2479 _{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\ 2480 0_{1 \times 3} & 1 2481 \end{bmatrix} 2482 \begin{bmatrix} 2483 X_b\\ 2484 Y_b\\ 2485 Z_b\\ 2486 1 2487 \end{bmatrix} 2488 \f] 2489 - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using 2490 for instance a pose estimation method (PnP) from 2D-3D point correspondences 2491 \f[ 2492 \begin{bmatrix} 2493 X_c\\ 2494 Y_c\\ 2495 Z_c\\ 2496 1 2497 \end{bmatrix} 2498 = 2499 \begin{bmatrix} 2500 _{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\ 2501 0_{1 \times 3} & 1 2502 \end{bmatrix} 2503 \begin{bmatrix} 2504 X_w\\ 2505 Y_w\\ 2506 Z_w\\ 2507 1 2508 \end{bmatrix} 2509 \f] 2510 2511 The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations 2512 \f[ 2513 \begin{bmatrix} 2514 X_w\\ 2515 Y_w\\ 2516 Z_w\\ 2517 1 2518 \end{bmatrix} 2519 = 2520 \begin{bmatrix} 2521 _{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\ 2522 0_{1 \times 3} & 1 2523 \end{bmatrix} 2524 \begin{bmatrix} 2525 X_b\\ 2526 Y_b\\ 2527 Z_b\\ 2528 1 2529 \end{bmatrix} 2530 \f] 2531 \f[ 2532 \begin{bmatrix} 2533 X_c\\ 2534 Y_c\\ 2535 Z_c\\ 2536 1 2537 \end{bmatrix} 2538 = 2539 \begin{bmatrix} 2540 _{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\ 2541 0_{1 \times 3} & 1 2542 \end{bmatrix} 2543 \begin{bmatrix} 2544 X_g\\ 2545 Y_g\\ 2546 Z_g\\ 2547 1 2548 \end{bmatrix} 2549 \f] 2550 2551 This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with: 2552 - \f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$ 2553 - \f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$ 2554 - \f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$ 2555 - \f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$ 2556 2557 \note 2558 At least 3 measurements are required (input vectors size must be greater or equal to 3). 2559 2560 */ 2561 CV_EXPORTS_W void calibrateRobotWorldHandEye( InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam, 2562 InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper, 2563 OutputArray R_base2world, OutputArray t_base2world, 2564 OutputArray R_gripper2cam, OutputArray t_gripper2cam, 2565 RobotWorldHandEyeCalibrationMethod method=CALIB_ROBOT_WORLD_HAND_EYE_SHAH ); 2566 2567 /** @brief Converts points from Euclidean to homogeneous space. 2568 2569 @param src Input vector of N-dimensional points. 2570 @param dst Output vector of N+1-dimensional points. 2571 2572 The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of 2573 point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1). 2574 */ 2575 CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst ); 2576 2577 /** @brief Converts points from homogeneous to Euclidean space. 2578 2579 @param src Input vector of N-dimensional points. 2580 @param dst Output vector of N-1-dimensional points. 2581 2582 The function converts points homogeneous to Euclidean space using perspective projection. That is, 2583 each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the 2584 output point coordinates will be (0,0,0,...). 2585 */ 2586 CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst ); 2587 2588 /** @brief Converts points to/from homogeneous coordinates. 2589 2590 @param src Input array or vector of 2D, 3D, or 4D points. 2591 @param dst Output vector of 2D, 3D, or 4D points. 2592 2593 The function converts 2D or 3D points from/to homogeneous coordinates by calling either 2594 #convertPointsToHomogeneous or #convertPointsFromHomogeneous. 2595 2596 @note The function is obsolete. Use one of the previous two functions instead. 2597 */ 2598 CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst ); 2599 2600 /** @brief Calculates a fundamental matrix from the corresponding points in two images. 2601 2602 @param points1 Array of N points from the first image. The point coordinates should be 2603 floating-point (single or double precision). 2604 @param points2 Array of the second image points of the same size and format as points1 . 2605 @param method Method for computing a fundamental matrix. 2606 - @ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$ 2607 - @ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$ 2608 - @ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$ 2609 - @ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$ 2610 @param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar 2611 line in pixels, beyond which the point is considered an outlier and is not used for computing the 2612 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the 2613 point localization, image resolution, and the image noise. 2614 @param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level 2615 of confidence (probability) that the estimated matrix is correct. 2616 @param[out] mask optional output mask 2617 @param maxIters The maximum number of robust method iterations. 2618 2619 The epipolar geometry is described by the following equation: 2620 2621 \f[[p_2; 1]^T F [p_1; 1] = 0\f] 2622 2623 where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the 2624 second images, respectively. 2625 2626 The function calculates the fundamental matrix using one of four methods listed above and returns 2627 the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point 2628 algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3 2629 matrices sequentially). 2630 2631 The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the 2632 epipolar lines corresponding to the specified points. It can also be passed to 2633 #stereoRectifyUncalibrated to compute the rectification transformation. : 2634 @code 2635 // Example. Estimation of fundamental matrix using the RANSAC algorithm 2636 int point_count = 100; 2637 vector<Point2f> points1(point_count); 2638 vector<Point2f> points2(point_count); 2639 2640 // initialize the points here ... 2641 for( int i = 0; i < point_count; i++ ) 2642 { 2643 points1[i] = ...; 2644 points2[i] = ...; 2645 } 2646 2647 Mat fundamental_matrix = 2648 findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99); 2649 @endcode 2650 */ 2651 CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, 2652 int method, double ransacReprojThreshold, double confidence, 2653 int maxIters, OutputArray mask = noArray() ); 2654 2655 /** @overload */ 2656 CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, 2657 int method = FM_RANSAC, 2658 double ransacReprojThreshold = 3., double confidence = 0.99, 2659 OutputArray mask = noArray() ); 2660 2661 /** @overload */ 2662 CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2, 2663 OutputArray mask, int method = FM_RANSAC, 2664 double ransacReprojThreshold = 3., double confidence = 0.99 ); 2665 2666 2667 CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, 2668 OutputArray mask, const UsacParams ¶ms); 2669 2670 /** @brief Calculates an essential matrix from the corresponding points in two images. 2671 2672 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should 2673 be floating-point (single or double precision). 2674 @param points2 Array of the second image points of the same size and format as points1 . 2675 @param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . 2676 Note that this function assumes that points1 and points2 are feature points from cameras with the 2677 same camera intrinsic matrix. If this assumption does not hold for your use case, use 2678 #undistortPoints with `P = cv::NoArray()` for both cameras to transform image points 2679 to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When 2680 passing these coordinates, pass the identity matrix for this parameter. 2681 @param method Method for computing an essential matrix. 2682 - @ref RANSAC for the RANSAC algorithm. 2683 - @ref LMEDS for the LMedS algorithm. 2684 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of 2685 confidence (probability) that the estimated matrix is correct. 2686 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar 2687 line in pixels, beyond which the point is considered an outlier and is not used for computing the 2688 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the 2689 point localization, image resolution, and the image noise. 2690 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 2691 for the other points. The array is computed only in the RANSAC and LMedS methods. 2692 @param maxIters The maximum number of robust method iterations. 2693 2694 This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . 2695 @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: 2696 2697 \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] 2698 2699 where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the 2700 second images, respectively. The result of this function may be passed further to 2701 #decomposeEssentialMat or #recoverPose to recover the relative pose between cameras. 2702 */ 2703 CV_EXPORTS_W 2704 Mat findEssentialMat( 2705 InputArray points1, InputArray points2, 2706 InputArray cameraMatrix, int method = RANSAC, 2707 double prob = 0.999, double threshold = 1.0, 2708 int maxIters = 1000, OutputArray mask = noArray() 2709 ); 2710 2711 /** @overload */ 2712 CV_EXPORTS 2713 Mat findEssentialMat( 2714 InputArray points1, InputArray points2, 2715 InputArray cameraMatrix, int method, 2716 double prob, double threshold, 2717 OutputArray mask 2718 ); // TODO remove from OpenCV 5.0 2719 2720 /** @overload 2721 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should 2722 be floating-point (single or double precision). 2723 @param points2 Array of the second image points of the same size and format as points1 . 2724 @param focal focal length of the camera. Note that this function assumes that points1 and points2 2725 are feature points from cameras with same focal length and principal point. 2726 @param pp principal point of the camera. 2727 @param method Method for computing a fundamental matrix. 2728 - @ref RANSAC for the RANSAC algorithm. 2729 - @ref LMEDS for the LMedS algorithm. 2730 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar 2731 line in pixels, beyond which the point is considered an outlier and is not used for computing the 2732 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the 2733 point localization, image resolution, and the image noise. 2734 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of 2735 confidence (probability) that the estimated matrix is correct. 2736 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 2737 for the other points. The array is computed only in the RANSAC and LMedS methods. 2738 @param maxIters The maximum number of robust method iterations. 2739 2740 This function differs from the one above that it computes camera intrinsic matrix from focal length and 2741 principal point: 2742 2743 \f[A = 2744 \begin{bmatrix} 2745 f & 0 & x_{pp} \\ 2746 0 & f & y_{pp} \\ 2747 0 & 0 & 1 2748 \end{bmatrix}\f] 2749 */ 2750 CV_EXPORTS_W 2751 Mat findEssentialMat( 2752 InputArray points1, InputArray points2, 2753 double focal = 1.0, Point2d pp = Point2d(0, 0), 2754 int method = RANSAC, double prob = 0.999, 2755 double threshold = 1.0, int maxIters = 1000, 2756 OutputArray mask = noArray() 2757 ); 2758 2759 /** @overload */ 2760 CV_EXPORTS 2761 Mat findEssentialMat( 2762 InputArray points1, InputArray points2, 2763 double focal, Point2d pp, 2764 int method, double prob, 2765 double threshold, OutputArray mask 2766 ); // TODO remove from OpenCV 5.0 2767 2768 /** @brief Calculates an essential matrix from the corresponding points in two images from potentially two different cameras. 2769 2770 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should 2771 be floating-point (single or double precision). 2772 @param points2 Array of the second image points of the same size and format as points1 . 2773 @param cameraMatrix1 Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 2774 Note that this function assumes that points1 and points2 are feature points from cameras with the 2775 same camera matrix. If this assumption does not hold for your use case, use 2776 #undistortPoints with `P = cv::NoArray()` for both cameras to transform image points 2777 to normalized image coordinates, which are valid for the identity camera matrix. When 2778 passing these coordinates, pass the identity matrix for this parameter. 2779 @param cameraMatrix2 Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 2780 Note that this function assumes that points1 and points2 are feature points from cameras with the 2781 same camera matrix. If this assumption does not hold for your use case, use 2782 #undistortPoints with `P = cv::NoArray()` for both cameras to transform image points 2783 to normalized image coordinates, which are valid for the identity camera matrix. When 2784 passing these coordinates, pass the identity matrix for this parameter. 2785 @param distCoeffs1 Input vector of distortion coefficients 2786 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 2787 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. 2788 @param distCoeffs2 Input vector of distortion coefficients 2789 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 2790 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. 2791 @param method Method for computing an essential matrix. 2792 - @ref RANSAC for the RANSAC algorithm. 2793 - @ref LMEDS for the LMedS algorithm. 2794 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of 2795 confidence (probability) that the estimated matrix is correct. 2796 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar 2797 line in pixels, beyond which the point is considered an outlier and is not used for computing the 2798 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the 2799 point localization, image resolution, and the image noise. 2800 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 2801 for the other points. The array is computed only in the RANSAC and LMedS methods. 2802 2803 This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . 2804 @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: 2805 2806 \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] 2807 2808 where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the 2809 second images, respectively. The result of this function may be passed further to 2810 #decomposeEssentialMat or #recoverPose to recover the relative pose between cameras. 2811 */ 2812 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, 2813 InputArray cameraMatrix1, InputArray distCoeffs1, 2814 InputArray cameraMatrix2, InputArray distCoeffs2, 2815 int method = RANSAC, 2816 double prob = 0.999, double threshold = 1.0, 2817 OutputArray mask = noArray() ); 2818 2819 2820 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, 2821 InputArray cameraMatrix1, InputArray cameraMatrix2, 2822 InputArray dist_coeff1, InputArray dist_coeff2, OutputArray mask, 2823 const UsacParams ¶ms); 2824 2825 /** @brief Decompose an essential matrix to possible rotations and translation. 2826 2827 @param E The input essential matrix. 2828 @param R1 One possible rotation matrix. 2829 @param R2 Another possible rotation matrix. 2830 @param t One possible translation. 2831 2832 This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In 2833 general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$, 2834 \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. 2835 2836 If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image 2837 points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples 2838 \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first 2839 camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one 2840 can only get the direction of the translation. For this reason, the translation t is returned with 2841 unit length. 2842 */ 2843 CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t ); 2844 2845 /** @brief Recovers the relative camera rotation and the translation from an estimated essential 2846 matrix and the corresponding points in two images, using cheirality check. Returns the number of 2847 inliers that pass the check. 2848 2849 @param E The input essential matrix. 2850 @param points1 Array of N 2D points from the first image. The point coordinates should be 2851 floating-point (single or double precision). 2852 @param points2 Array of the second image points of the same size and format as points1 . 2853 @param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . 2854 Note that this function assumes that points1 and points2 are feature points from cameras with the 2855 same camera intrinsic matrix. 2856 @param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple 2857 that performs a change of basis from the first camera's coordinate system to the second camera's 2858 coordinate system. Note that, in general, t can not be used for this tuple, see the parameter 2859 described below. 2860 @param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and 2861 therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit 2862 length. 2863 @param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks 2864 inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to 2865 recover pose. In the output mask only inliers which pass the cheirality check. 2866 2867 This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies 2868 possible pose hypotheses by doing cheirality check. The cheirality check means that the 2869 triangulated 3D points should have positive depth. Some details can be found in @cite Nister03. 2870 2871 This function can be used to process the output E and mask from @ref findEssentialMat. In this 2872 scenario, points1 and points2 are the same input for #findEssentialMat : 2873 @code 2874 // Example. Estimation of fundamental matrix using the RANSAC algorithm 2875 int point_count = 100; 2876 vector<Point2f> points1(point_count); 2877 vector<Point2f> points2(point_count); 2878 2879 // initialize the points here ... 2880 for( int i = 0; i < point_count; i++ ) 2881 { 2882 points1[i] = ...; 2883 points2[i] = ...; 2884 } 2885 2886 // cametra matrix with both focal lengths = 1, and principal point = (0, 0) 2887 Mat cameraMatrix = Mat::eye(3, 3, CV_64F); 2888 2889 Mat E, R, t, mask; 2890 2891 E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask); 2892 recoverPose(E, points1, points2, cameraMatrix, R, t, mask); 2893 @endcode 2894 */ 2895 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, 2896 InputArray cameraMatrix, OutputArray R, OutputArray t, 2897 InputOutputArray mask = noArray() ); 2898 2899 /** @overload 2900 @param E The input essential matrix. 2901 @param points1 Array of N 2D points from the first image. The point coordinates should be 2902 floating-point (single or double precision). 2903 @param points2 Array of the second image points of the same size and format as points1 . 2904 @param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple 2905 that performs a change of basis from the first camera's coordinate system to the second camera's 2906 coordinate system. Note that, in general, t can not be used for this tuple, see the parameter 2907 description below. 2908 @param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and 2909 therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit 2910 length. 2911 @param focal Focal length of the camera. Note that this function assumes that points1 and points2 2912 are feature points from cameras with same focal length and principal point. 2913 @param pp principal point of the camera. 2914 @param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks 2915 inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to 2916 recover pose. In the output mask only inliers which pass the cheirality check. 2917 2918 This function differs from the one above that it computes camera intrinsic matrix from focal length and 2919 principal point: 2920 2921 \f[A = 2922 \begin{bmatrix} 2923 f & 0 & x_{pp} \\ 2924 0 & f & y_{pp} \\ 2925 0 & 0 & 1 2926 \end{bmatrix}\f] 2927 */ 2928 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, 2929 OutputArray R, OutputArray t, 2930 double focal = 1.0, Point2d pp = Point2d(0, 0), 2931 InputOutputArray mask = noArray() ); 2932 2933 /** @overload 2934 @param E The input essential matrix. 2935 @param points1 Array of N 2D points from the first image. The point coordinates should be 2936 floating-point (single or double precision). 2937 @param points2 Array of the second image points of the same size and format as points1. 2938 @param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ . 2939 Note that this function assumes that points1 and points2 are feature points from cameras with the 2940 same camera intrinsic matrix. 2941 @param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple 2942 that performs a change of basis from the first camera's coordinate system to the second camera's 2943 coordinate system. Note that, in general, t can not be used for this tuple, see the parameter 2944 description below. 2945 @param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and 2946 therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit 2947 length. 2948 @param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite 2949 points). 2950 @param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks 2951 inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to 2952 recover pose. In the output mask only inliers which pass the cheirality check. 2953 @param triangulatedPoints 3D points which were reconstructed by triangulation. 2954 2955 This function differs from the one above that it outputs the triangulated 3D point that are used for 2956 the cheirality check. 2957 */ 2958 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, 2959 InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(), 2960 OutputArray triangulatedPoints = noArray()); 2961 2962 /** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image. 2963 2964 @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or 2965 vector\<Point2f\> . 2966 @param whichImage Index of the image (1 or 2) that contains the points . 2967 @param F Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify . 2968 @param lines Output vector of the epipolar lines corresponding to the points in the other image. 2969 Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ . 2970 2971 For every point in one of the two images of a stereo pair, the function finds the equation of the 2972 corresponding epipolar line in the other image. 2973 2974 From the fundamental matrix definition (see #findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second 2975 image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as: 2976 2977 \f[l^{(2)}_i = F p^{(1)}_i\f] 2978 2979 And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as: 2980 2981 \f[l^{(1)}_i = F^T p^{(2)}_i\f] 2982 2983 Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ . 2984 */ 2985 CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage, 2986 InputArray F, OutputArray lines ); 2987 2988 /** @brief This function reconstructs 3-dimensional points (in homogeneous coordinates) by using 2989 their observations with a stereo camera. 2990 2991 @param projMatr1 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points 2992 given in the world's coordinate system into the first image. 2993 @param projMatr2 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points 2994 given in the world's coordinate system into the second image. 2995 @param projPoints1 2xN array of feature points in the first image. In the case of the c++ version, 2996 it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. 2997 @param projPoints2 2xN array of corresponding points in the second image. In the case of the c++ 2998 version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. 2999 @param points4D 4xN array of reconstructed points in homogeneous coordinates. These points are 3000 returned in the world's coordinate system. 3001 3002 @note 3003 Keep in mind that all input data should be of float type in order for this function to work. 3004 3005 @note 3006 If the projection matrices from @ref stereoRectify are used, then the returned points are 3007 represented in the first camera's rectified coordinate system. 3008 3009 @sa 3010 reprojectImageTo3D 3011 */ 3012 CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2, 3013 InputArray projPoints1, InputArray projPoints2, 3014 OutputArray points4D ); 3015 3016 /** @brief Refines coordinates of corresponding points. 3017 3018 @param F 3x3 fundamental matrix. 3019 @param points1 1xN array containing the first set of points. 3020 @param points2 1xN array containing the second set of points. 3021 @param newPoints1 The optimized points1. 3022 @param newPoints2 The optimized points2. 3023 3024 The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). 3025 For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it 3026 computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric 3027 error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the 3028 geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint 3029 \f$newPoints2^T * F * newPoints1 = 0\f$ . 3030 */ 3031 CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2, 3032 OutputArray newPoints1, OutputArray newPoints2 ); 3033 3034 /** @brief Filters off small noise blobs (speckles) in the disparity map 3035 3036 @param img The input 16-bit signed disparity image 3037 @param newVal The disparity value used to paint-off the speckles 3038 @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not 3039 affected by the algorithm 3040 @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same 3041 blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point 3042 disparity map, where disparity values are multiplied by 16, this scale factor should be taken into 3043 account when specifying this parameter value. 3044 @param buf The optional temporary buffer to avoid memory allocation within the function. 3045 */ 3046 CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, 3047 int maxSpeckleSize, double maxDiff, 3048 InputOutputArray buf = noArray() ); 3049 3050 //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by #stereoRectify) 3051 CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2, 3052 int minDisparity, int numberOfDisparities, 3053 int blockSize ); 3054 3055 //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm 3056 CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost, 3057 int minDisparity, int numberOfDisparities, 3058 int disp12MaxDisp = 1 ); 3059 3060 /** @brief Reprojects a disparity image to 3D space. 3061 3062 @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit 3063 floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no 3064 fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or 3065 @ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before 3066 being used here. 3067 @param _3dImage Output 3-channel floating-point image of the same size as disparity. Each element of 3068 _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one 3069 uses Q obtained by @ref stereoRectify, then the returned points are represented in the first 3070 camera's rectified coordinate system. 3071 @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with 3072 @ref stereoRectify. 3073 @param handleMissingValues Indicates, whether the function should handle missing values (i.e. 3074 points where the disparity was not computed). If handleMissingValues=true, then pixels with the 3075 minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed 3076 to 3D points with a very large Z value (currently set to 10000). 3077 @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F 3078 depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. 3079 3080 The function transforms a single-channel disparity map to a 3-channel image representing a 3D 3081 surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it 3082 computes: 3083 3084 \f[\begin{bmatrix} 3085 X \\ 3086 Y \\ 3087 Z \\ 3088 W 3089 \end{bmatrix} = Q \begin{bmatrix} 3090 x \\ 3091 y \\ 3092 \texttt{disparity} (x,y) \\ 3093 z 3094 \end{bmatrix}.\f] 3095 3096 @sa 3097 To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform. 3098 */ 3099 CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity, 3100 OutputArray _3dImage, InputArray Q, 3101 bool handleMissingValues = false, 3102 int ddepth = -1 ); 3103 3104 /** @brief Calculates the Sampson Distance between two points. 3105 3106 The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as: 3107 \f[ 3108 sd( \texttt{pt1} , \texttt{pt2} )= 3109 \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2} 3110 {((\texttt{F} \cdot \texttt{pt1})(0))^2 + 3111 ((\texttt{F} \cdot \texttt{pt1})(1))^2 + 3112 ((\texttt{F}^t \cdot \texttt{pt2})(0))^2 + 3113 ((\texttt{F}^t \cdot \texttt{pt2})(1))^2} 3114 \f] 3115 The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details. 3116 @param pt1 first homogeneous 2d point 3117 @param pt2 second homogeneous 2d point 3118 @param F fundamental matrix 3119 @return The computed Sampson distance. 3120 */ 3121 CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F); 3122 3123 /** @brief Computes an optimal affine transformation between two 3D point sets. 3124 3125 It computes 3126 \f[ 3127 \begin{bmatrix} 3128 x\\ 3129 y\\ 3130 z\\ 3131 \end{bmatrix} 3132 = 3133 \begin{bmatrix} 3134 a_{11} & a_{12} & a_{13}\\ 3135 a_{21} & a_{22} & a_{23}\\ 3136 a_{31} & a_{32} & a_{33}\\ 3137 \end{bmatrix} 3138 \begin{bmatrix} 3139 X\\ 3140 Y\\ 3141 Z\\ 3142 \end{bmatrix} 3143 + 3144 \begin{bmatrix} 3145 b_1\\ 3146 b_2\\ 3147 b_3\\ 3148 \end{bmatrix} 3149 \f] 3150 3151 @param src First input 3D point set containing \f$(X,Y,Z)\f$. 3152 @param dst Second input 3D point set containing \f$(x,y,z)\f$. 3153 @param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form 3154 \f[ 3155 \begin{bmatrix} 3156 a_{11} & a_{12} & a_{13} & b_1\\ 3157 a_{21} & a_{22} & a_{23} & b_2\\ 3158 a_{31} & a_{32} & a_{33} & b_3\\ 3159 \end{bmatrix} 3160 \f] 3161 @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). 3162 @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as 3163 an inlier. 3164 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything 3165 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation 3166 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. 3167 3168 The function estimates an optimal 3D affine transformation between two 3D point sets using the 3169 RANSAC algorithm. 3170 */ 3171 CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst, 3172 OutputArray out, OutputArray inliers, 3173 double ransacThreshold = 3, double confidence = 0.99); 3174 3175 /** @brief Computes an optimal affine transformation between two 3D point sets. 3176 3177 It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$ 3178 where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a 3179 scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least . 3180 The estimated affine transform has a homogeneous scale which is a subclass of affine 3181 transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3 3182 points each. 3183 3184 @param src First input 3D point set. 3185 @param dst Second input 3D point set. 3186 @param scale If null is passed, the scale parameter c will be assumed to be 1.0. 3187 Else the pointed-to variable will be set to the optimal scale. 3188 @param force_rotation If true, the returned rotation will never be a reflection. 3189 This might be unwanted, e.g. when optimizing a transform between a right- and a 3190 left-handed coordinate system. 3191 @return 3D affine transformation matrix \f$3 \times 4\f$ of the form 3192 \f[T = 3193 \begin{bmatrix} 3194 R & t\\ 3195 \end{bmatrix} 3196 \f] 3197 3198 */ 3199 CV_EXPORTS_W cv::Mat estimateAffine3D(InputArray src, InputArray dst, 3200 CV_OUT double* scale = nullptr, bool force_rotation = true); 3201 3202 /** @brief Computes an optimal translation between two 3D point sets. 3203 * 3204 * It computes 3205 * \f[ 3206 * \begin{bmatrix} 3207 * x\\ 3208 * y\\ 3209 * z\\ 3210 * \end{bmatrix} 3211 * = 3212 * \begin{bmatrix} 3213 * X\\ 3214 * Y\\ 3215 * Z\\ 3216 * \end{bmatrix} 3217 * + 3218 * \begin{bmatrix} 3219 * b_1\\ 3220 * b_2\\ 3221 * b_3\\ 3222 * \end{bmatrix} 3223 * \f] 3224 * 3225 * @param src First input 3D point set containing \f$(X,Y,Z)\f$. 3226 * @param dst Second input 3D point set containing \f$(x,y,z)\f$. 3227 * @param out Output 3D translation vector \f$3 \times 1\f$ of the form 3228 * \f[ 3229 * \begin{bmatrix} 3230 * b_1 \\ 3231 * b_2 \\ 3232 * b_3 \\ 3233 * \end{bmatrix} 3234 * \f] 3235 * @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). 3236 * @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as 3237 * an inlier. 3238 * @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything 3239 * between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation 3240 * significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. 3241 * 3242 * The function estimates an optimal 3D translation between two 3D point sets using the 3243 * RANSAC algorithm. 3244 * */ 3245 CV_EXPORTS_W int estimateTranslation3D(InputArray src, InputArray dst, 3246 OutputArray out, OutputArray inliers, 3247 double ransacThreshold = 3, double confidence = 0.99); 3248 3249 /** @brief Computes an optimal affine transformation between two 2D point sets. 3250 3251 It computes 3252 \f[ 3253 \begin{bmatrix} 3254 x\\ 3255 y\\ 3256 \end{bmatrix} 3257 = 3258 \begin{bmatrix} 3259 a_{11} & a_{12}\\ 3260 a_{21} & a_{22}\\ 3261 \end{bmatrix} 3262 \begin{bmatrix} 3263 X\\ 3264 Y\\ 3265 \end{bmatrix} 3266 + 3267 \begin{bmatrix} 3268 b_1\\ 3269 b_2\\ 3270 \end{bmatrix} 3271 \f] 3272 3273 @param from First input 2D point set containing \f$(X,Y)\f$. 3274 @param to Second input 2D point set containing \f$(x,y)\f$. 3275 @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). 3276 @param method Robust method used to compute transformation. The following methods are possible: 3277 - @ref RANSAC - RANSAC-based robust method 3278 - @ref LMEDS - Least-Median robust method 3279 RANSAC is the default method. 3280 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider 3281 a point as an inlier. Applies only to RANSAC. 3282 @param maxIters The maximum number of robust method iterations. 3283 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything 3284 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation 3285 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. 3286 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). 3287 Passing 0 will disable refining, so the output matrix will be output of robust method. 3288 3289 @return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation 3290 could not be estimated. The returned matrix has the following form: 3291 \f[ 3292 \begin{bmatrix} 3293 a_{11} & a_{12} & b_1\\ 3294 a_{21} & a_{22} & b_2\\ 3295 \end{bmatrix} 3296 \f] 3297 3298 The function estimates an optimal 2D affine transformation between two 2D point sets using the 3299 selected robust algorithm. 3300 3301 The computed transformation is then refined further (using only inliers) with the 3302 Levenberg-Marquardt method to reduce the re-projection error even more. 3303 3304 @note 3305 The RANSAC method can handle practically any ratio of outliers but needs a threshold to 3306 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works 3307 correctly only when there are more than 50% of inliers. 3308 3309 @sa estimateAffinePartial2D, getAffineTransform 3310 */ 3311 CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(), 3312 int method = RANSAC, double ransacReprojThreshold = 3, 3313 size_t maxIters = 2000, double confidence = 0.99, 3314 size_t refineIters = 10); 3315 3316 3317 CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray pts1, InputArray pts2, OutputArray inliers, 3318 const UsacParams ¶ms); 3319 3320 /** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between 3321 two 2D point sets. 3322 3323 @param from First input 2D point set. 3324 @param to Second input 2D point set. 3325 @param inliers Output vector indicating which points are inliers. 3326 @param method Robust method used to compute transformation. The following methods are possible: 3327 - @ref RANSAC - RANSAC-based robust method 3328 - @ref LMEDS - Least-Median robust method 3329 RANSAC is the default method. 3330 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider 3331 a point as an inlier. Applies only to RANSAC. 3332 @param maxIters The maximum number of robust method iterations. 3333 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything 3334 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation 3335 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. 3336 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). 3337 Passing 0 will disable refining, so the output matrix will be output of robust method. 3338 3339 @return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or 3340 empty matrix if transformation could not be estimated. 3341 3342 The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to 3343 combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust 3344 estimation. 3345 3346 The computed transformation is then refined further (using only inliers) with the 3347 Levenberg-Marquardt method to reduce the re-projection error even more. 3348 3349 Estimated transformation matrix is: 3350 \f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\ 3351 \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y 3352 \end{bmatrix} \f] 3353 Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are 3354 translations in \f$ x, y \f$ axes respectively. 3355 3356 @note 3357 The RANSAC method can handle practically any ratio of outliers but need a threshold to 3358 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works 3359 correctly only when there are more than 50% of inliers. 3360 3361 @sa estimateAffine2D, getAffineTransform 3362 */ 3363 CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(), 3364 int method = RANSAC, double ransacReprojThreshold = 3, 3365 size_t maxIters = 2000, double confidence = 0.99, 3366 size_t refineIters = 10); 3367 3368 /** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp 3369 An example program with homography decomposition. 3370 3371 Check @ref tutorial_homography "the corresponding tutorial" for more details. 3372 */ 3373 3374 /** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s). 3375 3376 @param H The input homography matrix between two images. 3377 @param K The input camera intrinsic matrix. 3378 @param rotations Array of rotation matrices. 3379 @param translations Array of translation matrices. 3380 @param normals Array of plane normal matrices. 3381 3382 This function extracts relative camera motion between two views of a planar object and returns up to 3383 four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of 3384 the homography matrix H is described in detail in @cite Malis. 3385 3386 If the homography H, induced by the plane, gives the constraint 3387 \f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points 3388 \f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and 3389 translations[k] is a change of basis from the source camera's coordinate system to the destination 3390 camera's coordinate system. However, by decomposing H, one can only get the translation normalized 3391 by the (typically unknown) depth of the scene, i.e. its direction but with normalized length. 3392 3393 If point correspondences are available, at least two solutions may further be invalidated, by 3394 applying positive depth constraint, i.e. all points must be in front of the camera. 3395 */ 3396 CV_EXPORTS_W int decomposeHomographyMat(InputArray H, 3397 InputArray K, 3398 OutputArrayOfArrays rotations, 3399 OutputArrayOfArrays translations, 3400 OutputArrayOfArrays normals); 3401 3402 /** @brief Filters homography decompositions based on additional information. 3403 3404 @param rotations Vector of rotation matrices. 3405 @param normals Vector of plane normal matrices. 3406 @param beforePoints Vector of (rectified) visible reference points before the homography is applied 3407 @param afterPoints Vector of (rectified) visible reference points after the homography is applied 3408 @param possibleSolutions Vector of int indices representing the viable solution set after filtering 3409 @param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function 3410 3411 This function is intended to filter the output of the #decomposeHomographyMat based on additional 3412 information as described in @cite Malis . The summary of the method: the #decomposeHomographyMat function 3413 returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the 3414 sets of points visible in the camera frame before and after the homography transformation is applied, 3415 we can determine which are the true potential solutions and which are the opposites by verifying which 3416 homographies are consistent with all visible reference points being in front of the camera. The inputs 3417 are left unchanged; the filtered solution set is returned as indices into the existing one. 3418 3419 */ 3420 CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations, 3421 InputArrayOfArrays normals, 3422 InputArray beforePoints, 3423 InputArray afterPoints, 3424 OutputArray possibleSolutions, 3425 InputArray pointsMask = noArray()); 3426 3427 /** @brief The base class for stereo correspondence algorithms. 3428 */ 3429 class CV_EXPORTS_W StereoMatcher : public Algorithm 3430 { 3431 public: 3432 enum { DISP_SHIFT = 4, 3433 DISP_SCALE = (1 << DISP_SHIFT) 3434 }; 3435 3436 /** @brief Computes disparity map for the specified stereo pair 3437 3438 @param left Left 8-bit single-channel image. 3439 @param right Right image of the same size and the same type as the left one. 3440 @param disparity Output disparity map. It has the same size as the input images. Some algorithms, 3441 like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value 3442 has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map. 3443 */ 3444 CV_WRAP virtual void compute( InputArray left, InputArray right, 3445 OutputArray disparity ) = 0; 3446 3447 CV_WRAP virtual int getMinDisparity() const = 0; 3448 CV_WRAP virtual void setMinDisparity(int minDisparity) = 0; 3449 3450 CV_WRAP virtual int getNumDisparities() const = 0; 3451 CV_WRAP virtual void setNumDisparities(int numDisparities) = 0; 3452 3453 CV_WRAP virtual int getBlockSize() const = 0; 3454 CV_WRAP virtual void setBlockSize(int blockSize) = 0; 3455 3456 CV_WRAP virtual int getSpeckleWindowSize() const = 0; 3457 CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0; 3458 3459 CV_WRAP virtual int getSpeckleRange() const = 0; 3460 CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0; 3461 3462 CV_WRAP virtual int getDisp12MaxDiff() const = 0; 3463 CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0; 3464 }; 3465 3466 3467 /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and 3468 contributed to OpenCV by K. Konolige. 3469 */ 3470 class CV_EXPORTS_W StereoBM : public StereoMatcher 3471 { 3472 public: 3473 enum { PREFILTER_NORMALIZED_RESPONSE = 0, 3474 PREFILTER_XSOBEL = 1 3475 }; 3476 3477 CV_WRAP virtual int getPreFilterType() const = 0; 3478 CV_WRAP virtual void setPreFilterType(int preFilterType) = 0; 3479 3480 CV_WRAP virtual int getPreFilterSize() const = 0; 3481 CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0; 3482 3483 CV_WRAP virtual int getPreFilterCap() const = 0; 3484 CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; 3485 3486 CV_WRAP virtual int getTextureThreshold() const = 0; 3487 CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0; 3488 3489 CV_WRAP virtual int getUniquenessRatio() const = 0; 3490 CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; 3491 3492 CV_WRAP virtual int getSmallerBlockSize() const = 0; 3493 CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0; 3494 3495 CV_WRAP virtual Rect getROI1() const = 0; 3496 CV_WRAP virtual void setROI1(Rect roi1) = 0; 3497 3498 CV_WRAP virtual Rect getROI2() const = 0; 3499 CV_WRAP virtual void setROI2(Rect roi2) = 0; 3500 3501 /** @brief Creates StereoBM object 3502 3503 @param numDisparities the disparity search range. For each pixel algorithm will find the best 3504 disparity from 0 (default minimum disparity) to numDisparities. The search range can then be 3505 shifted by changing the minimum disparity. 3506 @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd 3507 (as the block is centered at the current pixel). Larger block size implies smoother, though less 3508 accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher 3509 chance for algorithm to find a wrong correspondence. 3510 3511 The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for 3512 a specific stereo pair. 3513 */ 3514 CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21); 3515 }; 3516 3517 /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original 3518 one as follows: 3519 3520 - By default, the algorithm is single-pass, which means that you consider only 5 directions 3521 instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the 3522 algorithm but beware that it may consume a lot of memory. 3523 - The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the 3524 blocks to single pixels. 3525 - Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi 3526 sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well. 3527 - Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for 3528 example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness 3529 check, quadratic interpolation and speckle filtering). 3530 3531 @note 3532 - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found 3533 at opencv_source_code/samples/python/stereo_match.py 3534 */ 3535 class CV_EXPORTS_W StereoSGBM : public StereoMatcher 3536 { 3537 public: 3538 enum 3539 { 3540 MODE_SGBM = 0, 3541 MODE_HH = 1, 3542 MODE_SGBM_3WAY = 2, 3543 MODE_HH4 = 3 3544 }; 3545 3546 CV_WRAP virtual int getPreFilterCap() const = 0; 3547 CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; 3548 3549 CV_WRAP virtual int getUniquenessRatio() const = 0; 3550 CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; 3551 3552 CV_WRAP virtual int getP1() const = 0; 3553 CV_WRAP virtual void setP1(int P1) = 0; 3554 3555 CV_WRAP virtual int getP2() const = 0; 3556 CV_WRAP virtual void setP2(int P2) = 0; 3557 3558 CV_WRAP virtual int getMode() const = 0; 3559 CV_WRAP virtual void setMode(int mode) = 0; 3560 3561 /** @brief Creates StereoSGBM object 3562 3563 @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes 3564 rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. 3565 @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than 3566 zero. In the current implementation, this parameter must be divisible by 16. 3567 @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be 3568 somewhere in the 3..11 range. 3569 @param P1 The first parameter controlling the disparity smoothness. See below. 3570 @param P2 The second parameter controlling the disparity smoothness. The larger the values are, 3571 the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 3572 between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor 3573 pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good 3574 P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and 3575 32\*number_of_image_channels\*blockSize\*blockSize , respectively). 3576 @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right 3577 disparity check. Set it to a non-positive value to disable the check. 3578 @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first 3579 computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. 3580 The result values are passed to the Birchfield-Tomasi pixel cost function. 3581 @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function 3582 value should "win" the second best value to consider the found match correct. Normally, a value 3583 within the 5-15 range is good enough. 3584 @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles 3585 and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 3586 50-200 range. 3587 @param speckleRange Maximum disparity variation within each connected component. If you do speckle 3588 filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. 3589 Normally, 1 or 2 is good enough. 3590 @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming 3591 algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and 3592 huge for HD-size pictures. By default, it is set to false . 3593 3594 The first constructor initializes StereoSGBM with all the default parameters. So, you only have to 3595 set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter 3596 to a custom value. 3597 */ 3598 CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3, 3599 int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, 3600 int preFilterCap = 0, int uniquenessRatio = 0, 3601 int speckleWindowSize = 0, int speckleRange = 0, 3602 int mode = StereoSGBM::MODE_SGBM); 3603 }; 3604 3605 3606 //! cv::undistort mode 3607 enum UndistortTypes 3608 { 3609 PROJ_SPHERICAL_ORTHO = 0, 3610 PROJ_SPHERICAL_EQRECT = 1 3611 }; 3612 3613 /** @brief Transforms an image to compensate for lens distortion. 3614 3615 The function transforms an image to compensate radial and tangential lens distortion. 3616 3617 The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap 3618 (with bilinear interpolation). See the former function for details of the transformation being 3619 performed. 3620 3621 Those pixels in the destination image, for which there is no correspondent pixels in the source 3622 image, are filled with zeros (black color). 3623 3624 A particular subset of the source image that will be visible in the corrected image can be regulated 3625 by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate 3626 newCameraMatrix depending on your requirements. 3627 3628 The camera matrix and the distortion parameters can be determined using #calibrateCamera. If 3629 the resolution of images is different from the resolution used at the calibration stage, \f$f_x, 3630 f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain 3631 the same. 3632 3633 @param src Input (distorted) image. 3634 @param dst Output (corrected) image that has the same size and type as src . 3635 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 3636 @param distCoeffs Input vector of distortion coefficients 3637 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 3638 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. 3639 @param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as 3640 cameraMatrix but you may additionally scale and shift the result by using a different matrix. 3641 */ 3642 CV_EXPORTS_W void undistort( InputArray src, OutputArray dst, 3643 InputArray cameraMatrix, 3644 InputArray distCoeffs, 3645 InputArray newCameraMatrix = noArray() ); 3646 3647 /** @brief Computes the undistortion and rectification transformation map. 3648 3649 The function computes the joint undistortion and rectification transformation and represents the 3650 result in the form of maps for #remap. The undistorted image looks like original, as if it is 3651 captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a 3652 monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by 3653 #getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera, 3654 newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify . 3655 3656 Also, this new camera is oriented differently in the coordinate space, according to R. That, for 3657 example, helps to align two heads of a stereo camera so that the epipolar lines on both images 3658 become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera). 3659 3660 The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That 3661 is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function 3662 computes the corresponding coordinates in the source image (that is, in the original image from 3663 camera). The following process is applied: 3664 \f[ 3665 \begin{array}{l} 3666 x \leftarrow (u - {c'}_x)/{f'}_x \\ 3667 y \leftarrow (v - {c'}_y)/{f'}_y \\ 3668 {[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\ 3669 x' \leftarrow X/W \\ 3670 y' \leftarrow Y/W \\ 3671 r^2 \leftarrow x'^2 + y'^2 \\ 3672 x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} 3673 + 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\ 3674 y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} 3675 + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ 3676 s\vecthree{x'''}{y'''}{1} = 3677 \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)} 3678 {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} 3679 {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ 3680 map_x(u,v) \leftarrow x''' f_x + c_x \\ 3681 map_y(u,v) \leftarrow y''' f_y + c_y 3682 \end{array} 3683 \f] 3684 where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 3685 are the distortion coefficients. 3686 3687 In case of a stereo camera, this function is called twice: once for each camera head, after 3688 #stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera 3689 was not calibrated, it is still possible to compute the rectification transformations directly from 3690 the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes 3691 homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D 3692 space. R can be computed from H as 3693 \f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f] 3694 where cameraMatrix can be chosen arbitrarily. 3695 3696 @param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 3697 @param distCoeffs Input vector of distortion coefficients 3698 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 3699 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. 3700 @param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 , 3701 computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation 3702 is assumed. In cvInitUndistortMap R assumed to be an identity matrix. 3703 @param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$. 3704 @param size Undistorted image size. 3705 @param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps 3706 @param map1 The first output map. 3707 @param map2 The second output map. 3708 */ 3709 CV_EXPORTS_W 3710 void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs, 3711 InputArray R, InputArray newCameraMatrix, 3712 Size size, int m1type, OutputArray map1, OutputArray map2); 3713 3714 /** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of 3715 #initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs. 3716 3717 The function computes the joint projection and inverse rectification transformation and represents the 3718 result in the form of maps for #remap. The projected image looks like a distorted version of the original which, 3719 once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix 3720 is usually equal to cameraMatrix, or it can be computed by 3721 #getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair, 3722 newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify . 3723 3724 The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs, 3725 this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This 3726 allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair). 3727 3728 The function builds the maps for the inverse mapping algorithm that is used by #remap. That 3729 is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function 3730 computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied: 3731 3732 \f[ 3733 \begin{array}{l} 3734 \text{newCameraMatrix}\\ 3735 x \leftarrow (u - {c'}_x)/{f'}_x \\ 3736 y \leftarrow (v - {c'}_y)/{f'}_y \\ 3737 3738 \\\text{Undistortion} 3739 \\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\ 3740 r^2 \leftarrow x^2 + y^2 \\ 3741 \theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\ 3742 x' \leftarrow \frac{x}{\theta} \\ 3743 y' \leftarrow \frac{y}{\theta} \\ 3744 3745 \\\text{Rectification}\\ 3746 {[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\ 3747 x'' \leftarrow X/W \\ 3748 y'' \leftarrow Y/W \\ 3749 3750 \\\text{cameraMatrix}\\ 3751 map_x(u,v) \leftarrow x'' f_x + c_x \\ 3752 map_y(u,v) \leftarrow y'' f_y + c_y 3753 \end{array} 3754 \f] 3755 where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 3756 are the distortion coefficients vector distCoeffs. 3757 3758 In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head. 3759 This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair 3760 is not calibrated, it is still possible to compute the rectification transformations directly from 3761 the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes 3762 homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D 3763 space. R can be computed from H as 3764 \f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f] 3765 where cameraMatrix can be chosen arbitrarily. 3766 3767 @param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 3768 @param distCoeffs Input vector of distortion coefficients 3769 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 3770 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. 3771 @param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2, 3772 computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation 3773 is assumed. 3774 @param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$. 3775 @param size Distorted image size. 3776 @param m1type Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps 3777 @param map1 The first output map for #remap. 3778 @param map2 The second output map for #remap. 3779 */ 3780 CV_EXPORTS_W 3781 void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs, 3782 InputArray R, InputArray newCameraMatrix, 3783 const Size& size, int m1type, OutputArray map1, OutputArray map2 ); 3784 3785 //! initializes maps for #remap for wide-angle 3786 CV_EXPORTS 3787 float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs, 3788 Size imageSize, int destImageWidth, 3789 int m1type, OutputArray map1, OutputArray map2, 3790 enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0); 3791 static inline 3792 float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs, 3793 Size imageSize, int destImageWidth, 3794 int m1type, OutputArray map1, OutputArray map2, 3795 int projType, double alpha = 0) 3796 { 3797 return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, 3798 m1type, map1, map2, (UndistortTypes)projType, alpha); 3799 } 3800 3801 /** @brief Returns the default new camera matrix. 3802 3803 The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when 3804 centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true). 3805 3806 In the latter case, the new camera matrix will be: 3807 3808 \f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f] 3809 3810 where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively. 3811 3812 By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not 3813 move the principal point. However, when you work with stereo, it is important to move the principal 3814 points in both views to the same y-coordinate (which is required by most of stereo correspondence 3815 algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for 3816 each view where the principal points are located at the center. 3817 3818 @param cameraMatrix Input camera matrix. 3819 @param imgsize Camera view image size in pixels. 3820 @param centerPrincipalPoint Location of the principal point in the new camera matrix. The 3821 parameter indicates whether this location should be at the image center or not. 3822 */ 3823 CV_EXPORTS_W 3824 Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(), 3825 bool centerPrincipalPoint = false); 3826 3827 /** @brief Computes the ideal point coordinates from the observed point coordinates. 3828 3829 The function is similar to #undistort and #initUndistortRectifyMap but it operates on a 3830 sparse set of points instead of a raster image. Also the function performs a reverse transformation 3831 to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a 3832 planar object, it does, up to a translation vector, if the proper R is specified. 3833 3834 For each observed point coordinate \f$(u, v)\f$ the function computes: 3835 \f[ 3836 \begin{array}{l} 3837 x^{"} \leftarrow (u - c_x)/f_x \\ 3838 y^{"} \leftarrow (v - c_y)/f_y \\ 3839 (x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\ 3840 {[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\ 3841 x \leftarrow X/W \\ 3842 y \leftarrow Y/W \\ 3843 \text{only performed if P is specified:} \\ 3844 u' \leftarrow x {f'}_x + {c'}_x \\ 3845 v' \leftarrow y {f'}_y + {c'}_y 3846 \end{array} 3847 \f] 3848 3849 where *undistort* is an approximate iterative algorithm that estimates the normalized original 3850 point coordinates out of the normalized distorted point coordinates ("normalized" means that the 3851 coordinates do not depend on the camera matrix). 3852 3853 The function can be used for both a stereo camera head or a monocular camera (when R is empty). 3854 @param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or 3855 vector\<Point2f\> ). 3856 @param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective 3857 transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates. 3858 @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 3859 @param distCoeffs Input vector of distortion coefficients 3860 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ 3861 of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. 3862 @param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by 3863 #stereoRectify can be passed here. If the matrix is empty, the identity transformation is used. 3864 @param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by 3865 #stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used. 3866 */ 3867 CV_EXPORTS_W 3868 void undistortPoints(InputArray src, OutputArray dst, 3869 InputArray cameraMatrix, InputArray distCoeffs, 3870 InputArray R = noArray(), InputArray P = noArray()); 3871 /** @overload 3872 @note Default version of #undistortPoints does 5 iterations to compute undistorted points. 3873 */ 3874 CV_EXPORTS_AS(undistortPointsIter) 3875 void undistortPoints(InputArray src, OutputArray dst, 3876 InputArray cameraMatrix, InputArray distCoeffs, 3877 InputArray R, InputArray P, TermCriteria criteria); 3878 3879 //! @} calib3d 3880 3881 /** @brief The methods in this namespace use a so-called fisheye camera model. 3882 @ingroup calib3d_fisheye 3883 */ 3884 namespace fisheye 3885 { 3886 //! @addtogroup calib3d_fisheye 3887 //! @{ 3888 3889 enum{ 3890 CALIB_USE_INTRINSIC_GUESS = 1 << 0, 3891 CALIB_RECOMPUTE_EXTRINSIC = 1 << 1, 3892 CALIB_CHECK_COND = 1 << 2, 3893 CALIB_FIX_SKEW = 1 << 3, 3894 CALIB_FIX_K1 = 1 << 4, 3895 CALIB_FIX_K2 = 1 << 5, 3896 CALIB_FIX_K3 = 1 << 6, 3897 CALIB_FIX_K4 = 1 << 7, 3898 CALIB_FIX_INTRINSIC = 1 << 8, 3899 CALIB_FIX_PRINCIPAL_POINT = 1 << 9, 3900 CALIB_ZERO_DISPARITY = 1 << 10, 3901 CALIB_FIX_FOCAL_LENGTH = 1 << 11 3902 }; 3903 3904 /** @brief Projects points using fisheye model 3905 3906 @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is 3907 the number of points in the view. 3908 @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or 3909 vector\<Point2f\>. 3910 @param affine 3911 @param K Camera intrinsic matrix \f$cameramatrix{K}\f$. 3912 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. 3913 @param alpha The skew coefficient. 3914 @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect 3915 to components of the focal lengths, coordinates of the principal point, distortion coefficients, 3916 rotation vector, translation vector, and the skew. In the old interface different components of 3917 the jacobian are returned via different output parameters. 3918 3919 The function computes projections of 3D points to the image plane given intrinsic and extrinsic 3920 camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of 3921 image points coordinates (as functions of all the input parameters) with respect to the particular 3922 parameters, intrinsic and/or extrinsic. 3923 */ 3924 CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, 3925 InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); 3926 3927 /** @overload */ 3928 CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, 3929 InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); 3930 3931 /** @brief Distorts 2D points using fisheye model. 3932 3933 @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is 3934 the number of points in the view. 3935 @param K Camera intrinsic matrix \f$cameramatrix{K}\f$. 3936 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. 3937 @param alpha The skew coefficient. 3938 @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . 3939 3940 Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity. 3941 This means if you want to transform back points undistorted with #fisheye::undistortPoints you have to 3942 multiply them with \f$P^{-1}\f$. 3943 */ 3944 CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0); 3945 3946 /** @brief Undistorts 2D points using fisheye model 3947 3948 @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the 3949 number of points in the view. 3950 @param K Camera intrinsic matrix \f$cameramatrix{K}\f$. 3951 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. 3952 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 3953 1-channel or 1x1 3-channel 3954 @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4) 3955 @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . 3956 */ 3957 CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, 3958 InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray()); 3959 3960 /** @brief Computes undistortion and rectification maps for image transform by #remap. If D is empty zero 3961 distortion is used, if R or P is empty identity matrixes are used. 3962 3963 @param K Camera intrinsic matrix \f$cameramatrix{K}\f$. 3964 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. 3965 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 3966 1-channel or 1x1 3-channel 3967 @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4) 3968 @param size Undistorted image size. 3969 @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps 3970 for details. 3971 @param map1 The first output map. 3972 @param map2 The second output map. 3973 */ 3974 CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, 3975 const cv::Size& size, int m1type, OutputArray map1, OutputArray map2); 3976 3977 /** @brief Transforms an image to compensate for fisheye lens distortion. 3978 3979 @param distorted image with fisheye lens distortion. 3980 @param undistorted Output image with compensated fisheye lens distortion. 3981 @param K Camera intrinsic matrix \f$cameramatrix{K}\f$. 3982 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. 3983 @param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you 3984 may additionally scale and shift the result by using a different matrix. 3985 @param new_size the new size 3986 3987 The function transforms an image to compensate radial and tangential lens distortion. 3988 3989 The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap 3990 (with bilinear interpolation). See the former function for details of the transformation being 3991 performed. 3992 3993 See below the results of undistortImage. 3994 - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3, 3995 k_4, k_5, k_6) of distortion were optimized under calibration) 3996 - b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2, 3997 k_3, k_4) of fisheye distortion were optimized under calibration) 3998 - c\) original image was captured with fisheye lens 3999 4000 Pictures a) and b) almost the same. But if we consider points of image located far from the center 4001 of image, we can notice that on image a) these points are distorted. 4002 4003  4004 */ 4005 CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, 4006 InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size()); 4007 4008 /** @brief Estimates new camera intrinsic matrix for undistortion or rectification. 4009 4010 @param K Camera intrinsic matrix \f$cameramatrix{K}\f$. 4011 @param image_size Size of the image 4012 @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$. 4013 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 4014 1-channel or 1x1 3-channel 4015 @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4) 4016 @param balance Sets the new focal length in range between the min focal length and the max focal 4017 length. Balance is in range of [0, 1]. 4018 @param new_size the new size 4019 @param fov_scale Divisor for new focal length. 4020 */ 4021 CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, 4022 OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0); 4023 4024 /** @brief Performs camera calibaration 4025 4026 @param objectPoints vector of vectors of calibration pattern points in the calibration pattern 4027 coordinate space. 4028 @param imagePoints vector of vectors of the projections of calibration pattern points. 4029 imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to 4030 objectPoints[i].size() for each i. 4031 @param image_size Size of the image used only to initialize the camera intrinsic matrix. 4032 @param K Output 3x3 floating-point camera intrinsic matrix 4033 \f$\cameramatrix{A}\f$ . If 4034 @ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be 4035 initialized before calling the function. 4036 @param D Output vector of distortion coefficients \f$\distcoeffsfisheye\f$. 4037 @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view. 4038 That is, each k-th rotation vector together with the corresponding k-th translation vector (see 4039 the next output parameter description) brings the calibration pattern from the model coordinate 4040 space (in which object points are specified) to the world coordinate space, that is, a real 4041 position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). 4042 @param tvecs Output vector of translation vectors estimated for each pattern view. 4043 @param flags Different flags that may be zero or a combination of the following values: 4044 - @ref fisheye::CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of 4045 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image 4046 center ( imageSize is used), and focal distances are computed in a least-squares fashion. 4047 - @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration 4048 of intrinsic optimization. 4049 - @ref fisheye::CALIB_CHECK_COND The functions will check validity of condition number. 4050 - @ref fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero. 4051 - @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients 4052 are set to zeros and stay zero. 4053 - @ref fisheye::CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global 4054 optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too. 4055 - @ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global 4056 optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too. 4057 @param criteria Termination criteria for the iterative optimization algorithm. 4058 */ 4059 CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size, 4060 InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0, 4061 TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); 4062 4063 /** @brief Stereo rectification for fisheye camera model 4064 4065 @param K1 First camera intrinsic matrix. 4066 @param D1 First camera distortion parameters. 4067 @param K2 Second camera intrinsic matrix. 4068 @param D2 Second camera distortion parameters. 4069 @param imageSize Size of the image used for stereo calibration. 4070 @param R Rotation matrix between the coordinate systems of the first and the second 4071 cameras. 4072 @param tvec Translation vector between coordinate systems of the cameras. 4073 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. 4074 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. 4075 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first 4076 camera. 4077 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second 4078 camera. 4079 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). 4080 @param flags Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set, 4081 the function makes the principal points of each camera have the same pixel coordinates in the 4082 rectified views. And if the flag is not set, the function may still shift the images in the 4083 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the 4084 useful image area. 4085 @param newImageSize New image resolution after rectification. The same size should be passed to 4086 #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) 4087 is passed (default), it is set to the original imageSize . Setting it to larger value can help you 4088 preserve details in the original image, especially when there is a big radial distortion. 4089 @param balance Sets the new focal length in range between the min focal length and the max focal 4090 length. Balance is in range of [0, 1]. 4091 @param fov_scale Divisor for new focal length. 4092 */ 4093 CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec, 4094 OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(), 4095 double balance = 0.0, double fov_scale = 1.0); 4096 4097 /** @brief Performs stereo calibration 4098 4099 @param objectPoints Vector of vectors of the calibration pattern points. 4100 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, 4101 observed by the first camera. 4102 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, 4103 observed by the second camera. 4104 @param K1 Input/output first camera intrinsic matrix: 4105 \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If 4106 any of @ref fisheye::CALIB_USE_INTRINSIC_GUESS , @ref fisheye::CALIB_FIX_INTRINSIC are specified, 4107 some or all of the matrix components must be initialized. 4108 @param D1 Input/output vector of distortion coefficients \f$\distcoeffsfisheye\f$ of 4 elements. 4109 @param K2 Input/output second camera intrinsic matrix. The parameter is similar to K1 . 4110 @param D2 Input/output lens distortion coefficients for the second camera. The parameter is 4111 similar to D1 . 4112 @param imageSize Size of the image used only to initialize camera intrinsic matrix. 4113 @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. 4114 @param T Output translation vector between the coordinate systems of the cameras. 4115 @param flags Different flags that may be zero or a combination of the following values: 4116 - @ref fisheye::CALIB_FIX_INTRINSIC Fix K1, K2? and D1, D2? so that only R, T matrices 4117 are estimated. 4118 - @ref fisheye::CALIB_USE_INTRINSIC_GUESS K1, K2 contains valid initial values of 4119 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image 4120 center (imageSize is used), and focal distances are computed in a least-squares fashion. 4121 - @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration 4122 of intrinsic optimization. 4123 - @ref fisheye::CALIB_CHECK_COND The functions will check validity of condition number. 4124 - @ref fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero. 4125 - @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay 4126 zero. 4127 @param criteria Termination criteria for the iterative optimization algorithm. 4128 */ 4129 CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, 4130 InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize, 4131 OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC, 4132 TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); 4133 4134 //! @} calib3d_fisheye 4135 } // end namespace fisheye 4136 4137 } //end namespace cv 4138 4139 #if 0 //def __cplusplus 4140 ////////////////////////////////////////////////////////////////////////////////////////// 4141 class CV_EXPORTS CvLevMarq 4142 { 4143 public: 4144 CvLevMarq(); 4145 CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria= 4146 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), 4147 bool completeSymmFlag=false ); 4148 ~CvLevMarq(); 4149 void init( int nparams, int nerrs, CvTermCriteria criteria= 4150 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), 4151 bool completeSymmFlag=false ); 4152 bool update( const CvMat*& param, CvMat*& J, CvMat*& err ); 4153 bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm ); 4154 4155 void clear(); 4156 void step(); 4157 enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 }; 4158 4159 cv::Ptr<CvMat> mask; 4160 cv::Ptr<CvMat> prevParam; 4161 cv::Ptr<CvMat> param; 4162 cv::Ptr<CvMat> J; 4163 cv::Ptr<CvMat> err; 4164 cv::Ptr<CvMat> JtJ; 4165 cv::Ptr<CvMat> JtJN; 4166 cv::Ptr<CvMat> JtErr; 4167 cv::Ptr<CvMat> JtJV; 4168 cv::Ptr<CvMat> JtJW; 4169 double prevErrNorm, errNorm; 4170 int lambdaLg10; 4171 CvTermCriteria criteria; 4172 int state; 4173 int iters; 4174 bool completeSymmFlag; 4175 int solveMethod; 4176 }; 4177 #endif 4178 4179 #endif