github.com/kaydxh/golang@v0.0.131/pkg/gocv/cgo/third_path/opencv4/include/opencv2/flann.hpp (about) 1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #ifndef OPENCV_FLANN_HPP 44 #define OPENCV_FLANN_HPP 45 46 #include "opencv2/core.hpp" 47 #include "opencv2/flann/miniflann.hpp" 48 #include "opencv2/flann/flann_base.hpp" 49 50 /** 51 @defgroup flann Clustering and Search in Multi-Dimensional Spaces 52 53 This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate 54 Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest 55 neighbor search in large datasets and for high dimensional features. More information about FLANN 56 can be found in @cite Muja2009 . 57 */ 58 59 namespace cvflann 60 { 61 CV_EXPORTS flann_distance_t flann_distance_type(); 62 CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); 63 } 64 65 66 namespace cv 67 { 68 namespace flann 69 { 70 71 72 //! @addtogroup flann 73 //! @{ 74 75 template <typename T> struct CvType {}; 76 template <> struct CvType<unsigned char> { static int type() { return CV_8U; } }; 77 template <> struct CvType<char> { static int type() { return CV_8S; } }; 78 template <> struct CvType<unsigned short> { static int type() { return CV_16U; } }; 79 template <> struct CvType<short> { static int type() { return CV_16S; } }; 80 template <> struct CvType<int> { static int type() { return CV_32S; } }; 81 template <> struct CvType<float> { static int type() { return CV_32F; } }; 82 template <> struct CvType<double> { static int type() { return CV_64F; } }; 83 84 85 // bring the flann parameters into this namespace 86 using ::cvflann::get_param; 87 using ::cvflann::print_params; 88 89 // bring the flann distances into this namespace 90 using ::cvflann::L2_Simple; 91 using ::cvflann::L2; 92 using ::cvflann::L1; 93 using ::cvflann::MinkowskiDistance; 94 using ::cvflann::MaxDistance; 95 using ::cvflann::HammingLUT; 96 using ::cvflann::Hamming; 97 using ::cvflann::Hamming2; 98 using ::cvflann::DNAmmingLUT; 99 using ::cvflann::DNAmming2; 100 using ::cvflann::HistIntersectionDistance; 101 using ::cvflann::HellingerDistance; 102 using ::cvflann::ChiSquareDistance; 103 using ::cvflann::KL_Divergence; 104 105 106 /** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which 107 the index is built. 108 109 `Distance` functor specifies the metric to be used to calculate the distance between two points. 110 There are several `Distance` functors that are readily available: 111 112 cv::cvflann::L2_Simple - Squared Euclidean distance functor. 113 This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points) 114 115 cv::flann::L2 - Squared Euclidean distance functor, optimized version. 116 117 cv::flann::L1 - Manhattan distance functor, optimized version. 118 119 cv::flann::MinkowskiDistance - The Minkowsky distance functor. 120 This is highly optimised with loop unrolling. 121 The computation of squared root at the end is omitted for efficiency. 122 123 cv::flann::MaxDistance - The max distance functor. It computes the 124 maximum distance between two vectors. This distance is not a valid kdtree distance, it's not 125 dimensionwise additive. 126 127 cv::flann::HammingLUT - %Hamming distance functor. It counts the bit 128 differences between two strings using a lookup table implementation. 129 130 cv::flann::Hamming - %Hamming distance functor. Population count is 131 performed using library calls, if available. Lookup table implementation is used as a fallback. 132 133 cv::flann::Hamming2 - %Hamming distance functor. Population count is 134 implemented in 12 arithmetic operations (one of which is multiplication). 135 136 cv::flann::DNAmmingLUT - %Adaptation of the Hamming distance functor to DNA comparison. 137 As the four bases A, C, G, T of the DNA (or A, G, C, U for RNA) can be coded on 2 bits, 138 it counts the bits pairs differences between two sequences using a lookup table implementation. 139 140 cv::flann::DNAmming2 - %Adaptation of the Hamming distance functor to DNA comparison. 141 Bases differences count are vectorised thanks to arithmetic operations using standard 142 registers (AVX2 and AVX-512 should come in a near future). 143 144 cv::flann::HistIntersectionDistance - The histogram 145 intersection distance functor. 146 147 cv::flann::HellingerDistance - The Hellinger distance functor. 148 149 cv::flann::ChiSquareDistance - The chi-square distance functor. 150 151 cv::flann::KL_Divergence - The Kullback-Leibler divergence functor. 152 153 Although the provided implementations cover a vast range of cases, it is also possible to use 154 a custom implementation. The distance functor is a class whose `operator()` computes the distance 155 between two features. If the distance is also a kd-tree compatible distance, it should also provide an 156 `accum_dist()` method that computes the distance between individual feature dimensions. 157 158 In addition to `operator()` and `accum_dist()`, a distance functor should also define the 159 `ElementType` and the `ResultType` as the types of the elements it operates on and the type of the 160 result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full 161 distance between a pair of features can be accumulated from the partial distances between the 162 individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor. 163 If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual 164 dimensions of the elements it operates on can be accessed independently) a typedef 165 `is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the 166 distance is assumed to be a metric distance and will only be used with indexes operating on 167 generic metric distances. 168 */ 169 template <typename Distance> 170 class GenericIndex 171 { 172 public: 173 typedef typename Distance::ElementType ElementType; 174 typedef typename Distance::ResultType DistanceType; 175 176 /** @brief Constructs a nearest neighbor search index for a given dataset. 177 178 @param features Matrix of containing the features(points) to index. The size of the matrix is 179 num_features x feature_dimensionality and the data type of the elements in the matrix must 180 coincide with the type of the index. 181 @param params Structure containing the index parameters. The type of index that will be 182 constructed depends on the type of this parameter. See the description. 183 @param distance 184 185 The method constructs a fast search structure from a set of features using the specified algorithm 186 with specified parameters, as defined by params. params is a reference to one of the following class 187 IndexParams descendants: 188 189 - **LinearIndexParams** When passing an object of this type, the index will perform a linear, 190 brute-force search. : 191 @code 192 struct LinearIndexParams : public IndexParams 193 { 194 }; 195 @endcode 196 - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of 197 a set of randomized kd-trees which will be searched in parallel. : 198 @code 199 struct KDTreeIndexParams : public IndexParams 200 { 201 KDTreeIndexParams( int trees = 4 ); 202 }; 203 @endcode 204 - **HierarchicalClusteringIndexParams** When passing an object of this type the index constructed 205 will be a hierarchical tree of clusters, dividing each set of points into n clusters whose centers 206 are picked among the points without further refinement of their position. 207 This algorithm fits both floating, integer and binary vectors. : 208 @code 209 struct HierarchicalClusteringIndexParams : public IndexParams 210 { 211 HierarchicalClusteringIndexParams( 212 int branching = 32, 213 flann_centers_init_t centers_init = CENTERS_RANDOM, 214 int trees = 4, 215 int leaf_size = 100); 216 217 }; 218 @endcode 219 - **KMeansIndexParams** When passing an object of this type the index constructed will be a 220 hierarchical k-means tree (one tree by default), dividing each set of points into n clusters 221 whose barycenters are refined iteratively. 222 Note that this algorithm has been extended to the support of binary vectors as an alternative 223 to LSH when knn search speed is the criterium. It will also outperform LSH when processing 224 directly (i.e. without the use of MCA/PCA) datasets whose points share mostly the same values 225 for most of the dimensions. It is recommended to set more than one tree with binary data. : 226 @code 227 struct KMeansIndexParams : public IndexParams 228 { 229 KMeansIndexParams( 230 int branching = 32, 231 int iterations = 11, 232 flann_centers_init_t centers_init = CENTERS_RANDOM, 233 float cb_index = 0.2, 234 int trees = 1); 235 }; 236 @endcode 237 - **CompositeIndexParams** When using a parameters object of this type the index created 238 combines the randomized kd-trees and the hierarchical k-means tree. : 239 @code 240 struct CompositeIndexParams : public IndexParams 241 { 242 CompositeIndexParams( 243 int trees = 4, 244 int branching = 32, 245 int iterations = 11, 246 flann_centers_init_t centers_init = CENTERS_RANDOM, 247 float cb_index = 0.2 ); 248 }; 249 @endcode 250 - **LshIndexParams** When using a parameters object of this type the index created uses 251 multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search 252 by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd 253 International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007). 254 This algorithm is designed for binary vectors. : 255 @code 256 struct LshIndexParams : public IndexParams 257 { 258 LshIndexParams( 259 int table_number, 260 int key_size, 261 int multi_probe_level ); 262 }; 263 @endcode 264 - **AutotunedIndexParams** When passing an object of this type the index created is 265 automatically tuned to offer the best performance, by choosing the optimal index type 266 (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. : 267 @code 268 struct AutotunedIndexParams : public IndexParams 269 { 270 AutotunedIndexParams( 271 float target_precision = 0.9, 272 float build_weight = 0.01, 273 float memory_weight = 0, 274 float sample_fraction = 0.1 ); 275 }; 276 @endcode 277 - **SavedIndexParams** This object type is used for loading a previously saved index from the 278 disk. : 279 @code 280 struct SavedIndexParams : public IndexParams 281 { 282 SavedIndexParams( String filename ); 283 }; 284 @endcode 285 */ 286 GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); 287 288 ~GenericIndex(); 289 290 /** @brief Performs a K-nearest neighbor search for a given query point using the index. 291 292 @param query The query point 293 @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have 294 at least knn size. 295 @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have 296 at least knn size. 297 @param knn Number of nearest neighbors to search for. 298 @param params SearchParams 299 */ 300 void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, 301 std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); 302 void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); 303 304 /** @brief Performs a radius nearest neighbor search for a given query point using the index. 305 306 @param query The query point. 307 @param indices Vector that will contain the indices of the nearest neighbors found. 308 @param dists Vector that will contain the distances to the nearest neighbors found. It has the same 309 number of elements as indices. 310 @param radius The search radius. 311 @param params SearchParams 312 313 This function returns the number of nearest neighbors found. 314 */ 315 int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, 316 std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); 317 int radiusSearch(const Mat& query, Mat& indices, Mat& dists, 318 DistanceType radius, const ::cvflann::SearchParams& params); 319 320 void save(String filename) { nnIndex->save(filename); } 321 322 int veclen() const { return nnIndex->veclen(); } 323 324 int size() const { return (int)nnIndex->size(); } 325 326 ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } 327 328 CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } 329 330 private: 331 ::cvflann::Index<Distance>* nnIndex; 332 Mat _dataset; 333 }; 334 335 //! @cond IGNORED 336 337 #define FLANN_DISTANCE_CHECK \ 338 if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ 339 printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ 340 "the distance using cvflann::set_distance_type. This is no longer working as expected "\ 341 "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ 342 "for example for L1 distance use: GenericIndex< L1<float> > \n"); \ 343 } 344 345 346 template <typename Distance> 347 GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) 348 : _dataset(dataset) 349 { 350 CV_Assert(dataset.type() == CvType<ElementType>::type()); 351 CV_Assert(dataset.isContinuous()); 352 ::cvflann::Matrix<ElementType> m_dataset((ElementType*)_dataset.ptr<ElementType>(0), _dataset.rows, _dataset.cols); 353 354 nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance); 355 356 FLANN_DISTANCE_CHECK 357 358 nnIndex->buildIndex(); 359 } 360 361 template <typename Distance> 362 GenericIndex<Distance>::~GenericIndex() 363 { 364 delete nnIndex; 365 } 366 367 template <typename Distance> 368 void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) 369 { 370 ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); 371 ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); 372 ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); 373 374 FLANN_DISTANCE_CHECK 375 376 nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); 377 } 378 379 380 template <typename Distance> 381 void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) 382 { 383 CV_Assert(queries.type() == CvType<ElementType>::type()); 384 CV_Assert(queries.isContinuous()); 385 ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); 386 387 CV_Assert(indices.type() == CV_32S); 388 CV_Assert(indices.isContinuous()); 389 ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); 390 391 CV_Assert(dists.type() == CvType<DistanceType>::type()); 392 CV_Assert(dists.isContinuous()); 393 ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); 394 395 FLANN_DISTANCE_CHECK 396 397 nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); 398 } 399 400 template <typename Distance> 401 int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) 402 { 403 ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); 404 ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); 405 ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); 406 407 FLANN_DISTANCE_CHECK 408 409 return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); 410 } 411 412 template <typename Distance> 413 int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) 414 { 415 CV_Assert(query.type() == CvType<ElementType>::type()); 416 CV_Assert(query.isContinuous()); 417 ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); 418 419 CV_Assert(indices.type() == CV_32S); 420 CV_Assert(indices.isContinuous()); 421 ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); 422 423 CV_Assert(dists.type() == CvType<DistanceType>::type()); 424 CV_Assert(dists.isContinuous()); 425 ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); 426 427 FLANN_DISTANCE_CHECK 428 429 return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); 430 } 431 432 /** 433 * @deprecated Use GenericIndex class instead 434 */ 435 template <typename T> 436 class Index_ 437 { 438 public: 439 typedef typename L2<T>::ElementType ElementType; 440 typedef typename L2<T>::ResultType DistanceType; 441 442 CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params) 443 { 444 printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n"); 445 446 CV_Assert(dataset.type() == CvType<ElementType>::type()); 447 CV_Assert(dataset.isContinuous()); 448 ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); 449 450 if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { 451 nnIndex_L1 = NULL; 452 nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params); 453 } 454 else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { 455 nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params); 456 nnIndex_L2 = NULL; 457 } 458 else { 459 printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. " 460 "For other distance types you must use cv::flann::GenericIndex<Distance>\n"); 461 CV_Assert(0); 462 } 463 if (nnIndex_L1) nnIndex_L1->buildIndex(); 464 if (nnIndex_L2) nnIndex_L2->buildIndex(); 465 } 466 CV_DEPRECATED ~Index_() 467 { 468 if (nnIndex_L1) delete nnIndex_L1; 469 if (nnIndex_L2) delete nnIndex_L2; 470 } 471 472 CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) 473 { 474 ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); 475 ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); 476 ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); 477 478 if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); 479 if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); 480 } 481 CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) 482 { 483 CV_Assert(queries.type() == CvType<ElementType>::type()); 484 CV_Assert(queries.isContinuous()); 485 ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); 486 487 CV_Assert(indices.type() == CV_32S); 488 CV_Assert(indices.isContinuous()); 489 ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); 490 491 CV_Assert(dists.type() == CvType<DistanceType>::type()); 492 CV_Assert(dists.isContinuous()); 493 ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); 494 495 if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); 496 if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); 497 } 498 499 CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) 500 { 501 ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); 502 ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); 503 ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); 504 505 if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); 506 if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); 507 } 508 509 CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) 510 { 511 CV_Assert(query.type() == CvType<ElementType>::type()); 512 CV_Assert(query.isContinuous()); 513 ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); 514 515 CV_Assert(indices.type() == CV_32S); 516 CV_Assert(indices.isContinuous()); 517 ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); 518 519 CV_Assert(dists.type() == CvType<DistanceType>::type()); 520 CV_Assert(dists.isContinuous()); 521 ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); 522 523 if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); 524 if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); 525 } 526 527 CV_DEPRECATED void save(String filename) 528 { 529 if (nnIndex_L1) nnIndex_L1->save(filename); 530 if (nnIndex_L2) nnIndex_L2->save(filename); 531 } 532 533 CV_DEPRECATED int veclen() const 534 { 535 if (nnIndex_L1) return nnIndex_L1->veclen(); 536 if (nnIndex_L2) return nnIndex_L2->veclen(); 537 } 538 539 CV_DEPRECATED int size() const 540 { 541 if (nnIndex_L1) return nnIndex_L1->size(); 542 if (nnIndex_L2) return nnIndex_L2->size(); 543 } 544 545 CV_DEPRECATED ::cvflann::IndexParams getParameters() 546 { 547 if (nnIndex_L1) return nnIndex_L1->getParameters(); 548 if (nnIndex_L2) return nnIndex_L2->getParameters(); 549 550 } 551 552 CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() 553 { 554 if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); 555 if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); 556 } 557 558 private: 559 // providing backwards compatibility for L2 and L1 distances (most common) 560 ::cvflann::Index< L2<ElementType> >* nnIndex_L2; 561 ::cvflann::Index< L1<ElementType> >* nnIndex_L1; 562 }; 563 564 //! @endcond 565 566 /** @brief Clusters features using hierarchical k-means algorithm. 567 568 @param features The points to be clustered. The matrix must have elements of type 569 Distance::ElementType. 570 @param centers The centers of the clusters obtained. The matrix must have type 571 Distance::CentersType. The number of rows in this matrix represents the number of clusters desired, 572 however, because of the way the cut in the hierarchical tree is chosen, the number of clusters 573 computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of 574 clusters desired, where branching is the tree's branching factor (see description of the 575 KMeansIndexParams). 576 @param params Parameters used in the construction of the hierarchical k-means tree. 577 @param d Distance to be used for clustering. 578 579 The method clusters the given feature vectors by constructing a hierarchical k-means tree and 580 choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters 581 found. 582 */ 583 template <typename Distance> 584 int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, 585 Distance d = Distance()) 586 { 587 typedef typename Distance::ElementType ElementType; 588 typedef typename Distance::CentersType CentersType; 589 590 CV_Assert(features.type() == CvType<ElementType>::type()); 591 CV_Assert(features.isContinuous()); 592 ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols); 593 594 CV_Assert(centers.type() == CvType<CentersType>::type()); 595 CV_Assert(centers.isContinuous()); 596 ::cvflann::Matrix<CentersType> m_centers((CentersType*)centers.ptr<CentersType>(0), centers.rows, centers.cols); 597 598 return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d); 599 } 600 601 //! @cond IGNORED 602 603 template <typename ELEM_TYPE, typename DIST_TYPE> 604 CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) 605 { 606 printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use " 607 "cv::flann::hierarchicalClustering<Distance> instead\n"); 608 609 if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { 610 return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params); 611 } 612 else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { 613 return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params); 614 } 615 else { 616 printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards " 617 "compatibility for the L1 and L2 distances. " 618 "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n"); 619 CV_Assert(0); 620 } 621 } 622 623 //! @endcond 624 625 //! @} flann 626 627 } } // namespace cv::flann 628 629 #endif